Open Access
Issue
E3S Web Conf.
Volume 297, 2021
The 4th International Conference of Computer Science and Renewable Energies (ICCSRE'2021)
Article Number 01043
Number of page(s) 8
DOI https://doi.org/10.1051/e3sconf/202129701043
Published online 22 September 2021
  1. Chaoui H., Ibe-Ekeocha C.C. (2017) State of Charge and State of Health Estimation for Lithium Batteries Using Recurrent Neural Networks. IEEE Trans Veh Technol 66:8773–8783. https://doi.org/10.1109/TVT.2017.2715333 [Google Scholar]
  2. Luo W., Lv C., Wang L., Liu C. (2011) Study on impedance model of Li-ion battery. Proc 2011 6th IEEE Conf Ind Electron Appl ICIEA 2011 19431947. https://doi.org/10.1109/ICIEA.2011.5975910 [Google Scholar]
  3. Fan J., Fan J., Liu F., et al (2019) A Novel Machine Learning Method Based Approach for Li-Ion Battery Prognostic and Health Management. IEEE Access 7:160043–160061. https://doi.org/10.1109/ACCESS.2019.2947843 [Google Scholar]
  4. Ma, G., Zhang Y., Cheng C., et al. (2019) Remaining useful life prediction of lithium-ion batteries based on false nearest neighbors and a hybrid neural network. Appl Energy 253:113626. https://doi.org/10.1016/j.apenergy.2019.113626 [Google Scholar]
  5. Yu P., Hou Y., Song Y., et al. (2018) Lithium-Ion Battery Prognostics with Hybrid Gaussian Process Function Regression. Energies 11:. https://doi.org/10.3390/en11061420 [Google Scholar]
  6. Hu X., Jiang J., Cao D., Egardt B. (2016) Battery health prognosis for electric vehicles using sample entropy and sparse Bayesian predictive modeling. IEEE Trans Ind Electron 63:2645–2656. https://doi.org/10.1109/TIE.2015.2461523 [Google Scholar]
  7. Zhou J., Liu D., Peng Y., Peng X. (2012) Dynamic battery remaining useful life estimation: An online data-driven approach. 2012 IEEE I2MTC - Int Instrum Meas Technol Conf Proc 2196-2199. https://doi.org/10.1109/I2MTC.2012.6229280 [Google Scholar]
  8. Xiong, R. (2020) Battery Management Algorithm for Electric Vehicles [Google Scholar]
  9. Liu D., Luo Y., Liu J., et al. (2014) Lithium-ion battery remaining useful life estimation based on fusion nonlinear degradation AR model and RPF algorithm. Neural Comput Appl 25:557–572. https://doi.org/10.1007/s00521-013-1520-x [Google Scholar]
  10. Duan B., Zhang Q., Geng F., Zhang C. (2020) Remaining useful life prediction of lithium-ion battery based on extended Kalman particle filter. Int J Energy Res 44:1724–1734. https://doi.org/10.1002/er.5002 [Google Scholar]
  11. Chen X.-D., Yang H.-Y., Wun J.-S., et al. (2020) Life prediction of lithium-ion battery based on a hybrid model. Energy Explor Exploit 014459872091172. https://doi.org/10.1177/0144598720911724 [Google Scholar]
  12. Ren L., Zhao L., Hong S., et al. (2018) Remaining Useful Life Prediction for Lithium-Ion Battery: A Deep Learning Approach. IEEE Access 6:50587–50598. https://doi.org/10.1109/ACCESS.2018.2858856 [Google Scholar]
  13. Cadini F., Sbarufatti C., Cancelliere F., Giglio M. (2019) State-of-life prognosis and diagnosis of lithium-ion batteries by data-driven particle filters. Appl Energy 235:661–672. https://doi.org/10.1016/j.apenergy.2018.10.095 [Google Scholar]
  14. Wang P., Dan X., Yang Y. (2019) A multi-scale fusion prediction method for lithium-ion battery capacity based on ensemble empirical mode decomposition and nonlinear autoregressive neural networks. Int J Distrib Sens Networks 15:. https://doi.org/10.1177/1550147719839637 [Google Scholar]
  15. Zhang S., Zhai B., Guo X., et al. (2019) Synchronous estimation of state of health and remaining useful lifetime for lithium-ion battery using the incremental capacity and artificial neural networks. J Energy Storage 26:100951. https://doi.org/10.1016/j.est.2019.100951 [Google Scholar]
  16. Cui X., Hu T. (2020) State of Health Diagnosis and Remaining Useful Life Prediction for Lithium-ion Battery Based on Data Model Fusion Method. IEEE Access 8:207298–207307. https://doi.org/10.1109/ACCESS.2020.3038182 [Google Scholar]
  17. Yang H., Wang P., An Y., et al. (2020) Remaining useful life prediction based on denoising technique and deep neural network for lithium-ion capacitors. eTransportation 5:100078. https://doi.org/10.1016/j.etran.2020.100078 [Google Scholar]
  18. Jianfang J., Keke W., Xiaoqiong P., et al. (2021) Multi-Scale Prediction of RUL and SOH for Lithium-Ion Batteries Based on WNN-UPF Combined Model. Chinese J Electron 30:26–35. https://doi.org/10.1049/cje.2020.10.012 [Google Scholar]
  19. Li X., Zhang L., Wang Z., Dong P. (2019) Remaining useful life prediction for lithium-ion batteries based on a hybrid model combining the long shortterm memory and Elman neural networks. J Energy Storage 21:510–518. https://doi.org/10.1016Zj.est.2018.12.011 [Google Scholar]
  20. Nguyen T.N., Tran Q.D., Nguyen T.N., Nguyen Q.H. (2020) A CNN-LSTM Architecture for Detection of Intracranial Hemorrhage on CT Scans. medRxiv 2020.04.17.20070193. https://doi.org/10.1101/2020.04.17.20070193 [Google Scholar]
  21. Yasrab R., Pound M.P. (2020) PhenomNet: Bridging phenotype-genotype gap: A CNN-LSTM based automatic plant root anatomization system. bioRxiv 2020.05.03.075184. https://doi.org/10.1101/2020.05.03.075184 [Google Scholar]
  22. Kaur S., Kumar P., Kumaraguru P. (2020) Detecting clickbaits using two-phase hybrid CNN-LSTM biterm model. Expert Syst Appl 151:113350. https://doi.org/10.1016/j.eswa.2020.113350 [Google Scholar]
  23. Zhang Q., Lam J.C., Li V.O., Han Y. (2020) DeepAIR: A Hybrid CNN-LSTM Framework for Fine-Grained Air Pollution Forecast. 1–7 [Google Scholar]
  24. Vidal A., Kristjanpoller W. (2020) Gold volatility prediction using a CNN-LSTM approach. Expert Syst Appl 157:. https://doi.org/10.1016/j.eswa.2020.113481 [CrossRef] [Google Scholar]
  25. Bogaerts T., Masegosa A.D., Angarita-Zapata J.S., et al. (2020) A graph CNN-LSTM neural network for short and long-term traffic forecasting based on trajectory data. Transp Res Part C Emerg Technol 112:62–77. https://doi.org/10.1016/j.trc.2020.01.010 [Google Scholar]
  26. Li Y., He Y., Zhang M. (2020) Prediction of Chinese energy structure based on Convolutional Neural Network-Long Short-Term Memory (CNN-LSTM). Energy Sci Eng 1–10. https://doi.org/10.1002/ese3.698 [Google Scholar]
  27. Song X., Yang F., Wang D., Tsui K.L. (2019) Combined CNN-LSTM Network for State-of-Charge Estimation of Lithium-Ion Batteries. IEEE Access 7:88894–88902. https://doi.org/10.1109/ACCESS.2019.2926517 [CrossRef] [Google Scholar]
  28. Liu D., Luo Y., Peng Y., et al. (2012) Lithium-ion battery remaining useful life estimation based on nonlinear AR model combined with degradation feature. Proc Annu Conf Progn Heal Manag Soc 2012, PHM 2012 336–342 [Google Scholar]
  29. Xue Z., Zhang Y., Cheng C., Ma G. (2020) Remaining useful life prediction of lithium-ion batteries with adaptive unscented kalman filter and optimized support vector regression. Neurocomputing 376:95–102. https://doi.org/10.1016/j.neucom.2019.09.074 [Google Scholar]
  30. Choi Y., Ryu S., Park K., Kim H. (2019) Machine Learning-Based Lithium-Ion Battery Capacity Estimation Exploiting Multi-Channel Charging Profiles. IEEE Access 7:75143–75152. https://doi.org/10.1109/ACCESS.2019.2920932 [Google Scholar]
  31. B. Saha and K. Goebel, “Battery data set”, NASA AMES Prognostics Data Repository, USA, 2007. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.