Open Access
Issue
E3S Web Conf.
Volume 297, 2021
The 4th International Conference of Computer Science and Renewable Energies (ICCSRE'2021)
Article Number 01057
Number of page(s) 7
DOI https://doi.org/10.1051/e3sconf/202129701057
Published online 22 September 2021
  1. Abdel-Basset, M., Manogaran, G., Mohamed, M.: Internet of things (IoT) and its impact on supply chain: A framework for building smart, secure and ecient systems. Future Generation Computer Systems 86, 614–628 (2018). [Google Scholar]
  2. Ahmed, N., De, D., Hussain, I.: Internet of things (IoT) for smart precision agriculture and farming in rural areas. IEEE Internet of Things Journal 5(6), 4890–4899 (2018) [Google Scholar]
  3. Alansari, Z., Soomro, S., Belgaum, M.R., Shamshirband, S.: The rise of internet of things (IoT) in big healthcare data: Review and open research issues. In: Saeed, K., Chaki, N., Pati, B., Bakshi, S., Mohapatra, D.P. (eds.) Progress in Advanced Computing and Intelligent Engineering. pp. 675–685. Springer Singapore, Singapore (2018) [Google Scholar]
  4. Arasteh, H., Hosseinnezhad, V., Loia, V., Tommasetti, A., Troisi, O., Shae-Khah, M., Siano, P.: Iot-based smart cities: a survey. In: 2016 IEEE 16th International Conference on Environment and Electrical Engineering (EEEIC). pp. 1–6. IEEE (2016) [Google Scholar]
  5. Hodo, E., Bellekens, X., Hamilton, A., Dubouilh, P.L., Iorkyase, E., Tachtatzis, C., Atkinson, R.: Threat analysis of IoT networks using articial neural network intrusion detection system. In: 2016 International Symposium on Networks, Computers and Communications (ISNCC). pp. 1–6. IEEE (2016) [Google Scholar]
  6. Nogues, M., Brosset, D., Hindy, H., Bellekens, X., Kermarrec, Y.: Labelled network capture generation for anomaly detection. In: International Symposium on Foundations and Practice of Security. pp. 98–113. Springer (2019) [Google Scholar]
  7. M.-O. Pahl, F.-X. Aubet, All eyes on you: distributed multi-dimensional IoT microservice anomalydetection, in: Proceedings of the 2018 Fourteenth International Conference on Network and Service Management (CNSM)(CNSM 2018), 2018. Rome, Italy [Google Scholar]
  8. M.-O. Pahl, F.-X. Aubet, S. Liebald, Graph-based IoT microservice security, in: Proceedings of the NOMS 2018-2018 IEEE/IfIp Network Operations and [Google Scholar]
  9. X. Liu, Y. Liu, A. Liu, L.T. Yang, Defending on-offattacks using light probing messages in smart sensors for industrial communication systems, IEEE Trans. Ind. Inf. 14 (9) (2018) 3801–3811. [Google Scholar]
  10. A. Chadd, “DDoS attacks: past, present and future,” Network Security, vol. 2018, pp. 13–15, 2018. [CrossRef] [Google Scholar]
  11. Statista. (2019). Internet of Things (loT) connected devices installed base worldwide from 2015 to 2025 (in billions) [3] Columbus, L. (2018). [Google Scholar]
  12. Shakdhe, A., Agrawal, S., & Yang, B. (2019, May). Security Vulnerabilities in Consumer loT Applications. In 2019 IEEE 5 th Inti Conference on Big Data Security on Cloud (BigDataSecurity) (Pp. 16). [Google Scholar]
  13. Shunnan, M. M., Khrais, R. M., & Yateem, A. A. (2019, December). Lot Denial-of-Service Attack Detection and Prevention Using Hybrid IDS. In 2019 International Arab Conference on Information Technology (ACIT) (pp. 252–254). IEEE. [Google Scholar]
  14. Alrashdi, I., Alqazzaz, A., Aloufi, E., Alharthi, R., Zohdy, M., & Ming, H. (2019, January). AD-loT: anomaly detect ion of loT cyberattacks in smart city using machine learning. In 2019 IEEE 9th Annual Computing and Communication [Google Scholar]
  15. E. Anthi, L. Williams, P. Burnap, Pulse: an adaptive intrusion detection for the internet of things (2018). [Google Scholar]
  16. A. Ukil, S. Bandyoapdhyay, C. Puri, A. Pal, Lot healthcare analytics: The importance of anomaly detection, in: Proceedings of the 2016 IEEE 30th [Google Scholar]
  17. H.H. Pajouh, R. Javidan, R. Khayami, D. Ali, K.-K.R. Choo, A two-layer dimension reduction and two-tier classification model for anomaly-based intrusion detection in iot backbone networks, IEEE Trans. Emerg. Top. Comput. (2016). [Google Scholar]
  18. G. D’Angelo, F. Palmieri, M. Ficco, S. Rampone, An uncertainty-managing batch relevance-based approach to network anomaly detection, Appl. Soft Comput. 36 (2015)408–418. [Google Scholar]
  19. Alrashdi, I., Alqazzaz, A., Aloufi, E., Alharthi, R., Zohdy, M., & Ming, H. (2019, January). AD-loT: anomaly detect ion of loT cyberattacks in smart city using machine learning. In 2019 IEEE 9th Annual Computing and Communication Work shop and Conference (CCWC) (pp. 0305–0310). IEEE. [Google Scholar]
  20. Bakhtiar, F. A., Pramukantoro, E. S., & Nihri, H. (2019, March). A Lightweight IDS Based on J48 Algorithm for Detecting DoS Attacks on loT Middleware. In 2019 IEEE 1st Global Conference on Life Sciences and Technologies (LifeTech) (pp. 41–42). IEEE. [Google Scholar]
  21. A.A. Diro, N. Chilamkurti, Distributed attack detection scheme using deep learning approach for internet of things, Future Gen. Comput. Syst. 82 (2018) 761–768. [Google Scholar]
  22. O. Brun, Y. Yin, E. Gelenbe, Y.M. Kadioglu, J. Augusto-Gonzalez, M. Ramos, Deep learning with dense random neural networks for detecting attacks against IoT-connected home environments, in: Proceedings of the 2018 ISCIS Security Workshop, Imperial College London. Recent Cybersecurity Research in Europe. Lecture Notes CCIS, in: 821, 2018. [Google Scholar]
  23. Yanmiao Li, Yingying Xu, Zhi Liu, Haixia Hou, Yushuo Zheng, Yang Xin, Yuefeng Zhao, Lizhen Cui, Robust detection for network intrusion of industrial IoT based on multi-CNN fusion, Measurement, Volume 154, 2020, 107450, ISSN 0263-2241, [Google Scholar]
  24. D. Wu, Z. Jiang, X. Xie, X. Wei, W. Yu and R. Li, “LSTM Learning With Bayesian and Gaussian Processing for Anomaly Detection in Industrial IoT,” in IEEE Transactions on Industrial Informatics, vol. 16, no. 8 pp. 5244–5253, Aug. 2020, doi: 10.1109/TII.2019.2952917. [Google Scholar]
  25. M. Roopak, G. Yun Tian and J. Chambers, “Deep Learning Models for Cyber Security in IoT Networks,” 2019 IEEE 9th Annual Computing and Communication Workshop and Conference (CCWC), 2019, pp. 04520457, doi: 10.1109/CCWC.2019.8666588. [Google Scholar]
  26. Stef van Buuren, Karin Groothuis-Oudshoorn (2011). “Mice: Multivariate Imputation by Chained Equations in R”. Journal of Statistical Software 45: 1–67. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.