Open Access
Issue
E3S Web Conf.
Volume 297, 2021
The 4th International Conference of Computer Science and Renewable Energies (ICCSRE'2021)
Article Number 01058
Number of page(s) 7
DOI https://doi.org/10.1051/e3sconf/202129701058
Published online 22 September 2021
  1. M.M. Billah Islamic Investment Policies. In Modern Islamic Investment Management: Principles and Practices, edited by M.M. Billah (Springer International Publishing, Cham, 2019), pp. 53–70 [Google Scholar]
  2. I. Zeroual and A. Lakhouaja Arabic Corpus Linguistics: Major Progress, but Still a Long Way to Go. In Intelligent Natural Language Processing: Trends and Applications (Springer, Cham, 2018), pp. 613–636 [Google Scholar]
  3. W. Zaghouani. Critical survey of the freely available Arabic corpora. ArXiv Preprint ArXiv:1702.07835 (2017) [Google Scholar]
  4. M. Sayed, R.K. Salem, and A.E. Khder. A survey of Arabic text classification approaches International Journal of Computer Applications in Technology 59, 3 (2019), pp. 236–251 [Google Scholar]
  5. A.C. Tricco, E. Lillie, W. Zarin, K.K. O’Brien, H. Colquhoun, D. Levac, D. Moher, M.D. Peters, T. Horsley, and L. Weeks. PRISMA extension for scoping reviews (PRISMA-ScR): checklist and explanation. Annals of Internal Medicine 169, 7 (2018), pp. 467–473 [CrossRef] [PubMed] [Google Scholar]
  6. I.K. Gharaibeh and N.K. Gharaibeh. Towards Arabic Noun Phrase Extractor (ANPE) Using Information Retrieval Techniques. International Journal of Software Engineering 2, 2 (2012), pp. 36–42 [Google Scholar]
  7. I. Zeroual and A. Lakhouaja Arabic information retrieval: Stemming or lemmatization?. In Intelligent Systems and Computer Vision (ISCV) (IEEE, Fez, Morocco, 2017), pp. 1–6 [Google Scholar]
  8. O.A. Ghanem and W.M. Ashour. Stemming Effectiveness in Clustering of Arabic Documents. International Journal of Computer Applications 49, 1 (2012) [Google Scholar]
  9. A. Chennoufi and A. Mazroui. Impact of morphological analysis and a large training corpus on the performances of Arabic diacritization. International Journal of Speech Technology 19, 2 (2016), pp. 269–280 [Google Scholar]
  10. A. Ayedh, G. Tan, K. Alwesabi, and H. Rajeh. The Effect of Preprocessing on Arabic Document Categorization. Algorithms 9, 2 (2016) pp. 1–17 [Google Scholar]
  11. A. Farghaly and K. Shaalan. Arabic natural language processing: Challenges and solutions. ACM Transactions on Asian Language Information Processing (TALIP) 8, 14 (2009) [Google Scholar]
  12. A. El Kah and I. Zeroual. The effects of PreProcessing Techniques on Arabic Text Classification. IJATCSE 10, 1 (2021), pp. 41–48 [Google Scholar]
  13. O. Einea, A. Elnagar, and R. Al Debsi. SANAD: Single-label Arabic News Articles Dataset for automatic text categorization. Data in Brief 25, 104076 (2019) [CrossRef] [PubMed] [Google Scholar]
  14. A. Elnagar, R. Al-Debsi, and O. Einea. Arabic text classification using deep learning models. Information Processing & Management 57, 102121 (2020) [Google Scholar]
  15. I. Zeroual, D. Goldhahn, T. Eckart, and A. Lakhouaja OSIAN: Open Source International Arabic News Corpus - Preparation and Integration into the CLARIN-infrastructure. In Proceedings of the Fourth Arabic Natural Language Processing Workshop (Association for Computational Linguistics, Florence, Italy, 2019), pp. 175–182 [Google Scholar]
  16. A. Chouigui, O.B. Khiroun, and B. Elayeb ANT Corpus: An Arabic News Text Collection for Textual Classification. In Proceedings of the 14th ACS/IEEE International Conference on Computer Systems and Applications (AICCSA 2017) (Hammamet, Tunisia, 2017), pp. 135–142 [Google Scholar]
  17. I.A. El-khair. Abu el-khair corpus: A modern standard arabic corpus. International Journal of Recent Trends in Engineering & Research (IJRTER). 2, 11 (2016) [Google Scholar]
  18. N. Alalyani and S.L. Marie-Sainte. NADA: New Arabic Dataset for Text Classification. International Journal of Advanced Computer Science and Applications (IJACSA) 9, (2018) [Google Scholar]
  19. M.K. Saad and W. Ashour OSAC: Open Source Arabic Corpora. In 6th ArchEng Int. Symposiums, EEECS (2010) [Google Scholar]
  20. S.A. Chowdhury, A. Abdelali, K. Darwish, J. Soon-Gyo, J. Salminen, and B.J. Jansen Improving Arabic Text Categorization Using Transformer Training Diversification. In Proceedings of the Fifth Arabic Natural Language Processing Workshop (Association for Computational Linguistics, Barcelona, Spain (Online), 2020), pp. 226–236 [Google Scholar]
  21. D. Namly, K. Bouzoubaa, R. Tajmout, and A. Laadimi On Arabic Stop-Words: A Comprehensive List and a Dedicated Morphological Analyzer. In Arabic Language Processing: From Theory to Practice, edited by K. Smaïli (Springer International Publishing, Cham, 2019), pp. 149–163 [Google Scholar]
  22. A. Alajmi, E.M. Saad, and R.R. Darwish. Toward an ARABIC stop-words list generation. International Journal of Computer Applications 46, 8 (2012) [Google Scholar]
  23. L.S. Larkey, L. Ballesteros, and M.E. Connell Light stemming for Arabic information retrieval. In Arabic Computational Morphology (Springer, 2007), pp. 221–243 [Google Scholar]
  24. F.S. Al-Anzi and D. AbuZeina Stemming impact on Arabic text categorization performance: A survey. In 5th International Conference on Information Communication Technology and Accessibility (ICTA) (2015), pp. 1–7 [Google Scholar]
  25. A. Wahbeh, M. Al-Kabi, Q. Al-Radaideh, E. Al-Shawakfa, and I. Alsmadi. The effect of stemming on arabic text classification: an empirical study. International Journal of Information Retrieval Research JR) 1, 3 (2011), pp. 54–70 [Google Scholar]
  26. M. Naili, A.H. Chaibi, and H.H.B. Ghezala. Comparative study of Arabic stemming algorithms for topic identification. Procedia Computer Science 159, (2019), pp. 794–802 [Google Scholar]
  27. Y.A. Alhaj, J. Xiang, D. Zhao, M.A. Al-Qaness, M. Abd Elaziz, and A. Dahou. A study of the effects of stemming strategies on arabic document classification. IEEE Access 7, (2019), pp. 3266432671 [Google Scholar]
  28. K. Abainia and H. Rebbani Comparing the Effectiveness of the Improved ARLSTem Algorithm with Existing Arabic Light Stemmers. In International Conference on Theoretical and Applicative Aspects of Computer Science (ICTAACS) (IEEE, 2019), pp. 1–8 [Google Scholar]
  29. F.K. Hammouda and A.A. Almarimi. Heuristic Lemmatization for Arabic Texts Indexation and Classification. Journal of Computer Science 6, 6 (2010), pp. 660–665 [Google Scholar]
  30. A. Abdelali, K. Darwish, N. Durrani, and H. Mubarak A fast and furious segmenter for Arabic. In Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Demonstrations (2016), pp. 11–16 [Google Scholar]
  31. A. Pasha, M. Al-Badrashiny, M.T. Diab, A. El Kholy, R. Eskander, N. Habash, M. Pooleery, O. Rambow, and R. Roth MADAMIRA: A Fast, Comprehensive Tool for Morphological Analysis and Disambiguation of Arabic. In LREC (2014), pp. 1094–1101 [Google Scholar]
  32. L.A. Qadi, H.E. Rifai, S. Obaid, and A. Elnagar Arabic Text Classification of News Articles Using Classical Supervised Classifiers. In 2nd International Conference on New Trends in Computing Sciences (ICTCS) (2019), pp. 1–6 [Google Scholar]
  33. A. Alahmadi, A. Joorabchi, and A.E. Mahdi Combining Words and Concepts for Automatic Arabic Text Classification. In Arabic Language Processing: From Theory to Practice, edited by A. Lachkar, K. Bouzoubaa, A. Mazroui, A. Hamdani, and A. Lekhouaja (Springer International Publishing, Cham, 2018), pp. 105–119 [Google Scholar]
  34. A. El Kah and I. Zeroual Improved Document Categorization Through Feature-Rich Combinations. In Proceedings of the International Conference on Artificial Intelligence and Computer Vision (AICV2021), edited by A.E. Hassanien, A. Haqiq, P.J. Tonellato, L. Bellatreche, S. Goundar, A.T. Azar, E. Sabir, and D. Bouzidi (Springer International Publishing, Cham, 2021), pp. 346–355 [Google Scholar]
  35. A. McCallum and K. Nigam A comparison of event models for naive bayes text classification. In AAAI-98 Workshop on Learning for Text Categorization (Citeseer, 1998), pp. 41–48 [Google Scholar]
  36. H. Andreas, S. Steffen, and S. Gerd Wordnet improves text document clustering. In Proceedings of the SIGIR 2003 Semantic Web Workshop. New York: ACMPress (2003), pp. 541–544 [Google Scholar]
  37. M.A.R. Abdeen, S. AlBouq, A. Elmahalawy, and S. Shehata. A Closer Look at Arabic Text Classification. International Journal of Advanced Computer Science and Applications (IJACSA) 10, (2019) [Google Scholar]
  38. A.M.F. Al-Sbou. A Survey of Arabic Text Classification Models. International Journal of Electrical and Computer Engineering (IJECE) 8, 6 (2018), pp. 4352–4355 [Google Scholar]
  39. M.S. Khorsheed and A.O. Al-Thubaity. Comparative evaluation of text classification techniques using a large diverse Arabic dataset. Language Resources & Evaluation 47, 2 (2013), pp. 513–538 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.