Open Access
Issue
E3S Web Conf.
Volume 297, 2021
The 4th International Conference of Computer Science and Renewable Energies (ICCSRE'2021)
Article Number 01068
Number of page(s) 6
DOI https://doi.org/10.1051/e3sconf/202129701068
Published online 22 September 2021
  1. M. Ahat, S. Ben Amor, M. Bui, A. Bui, G. Guérard, C. Petermann, Smart Grid and Optimization, in American Journal of Operations Research, Vol. 3, n°.1A, 11p, (2013). [Google Scholar]
  2. «Low carbon green growth road map for Asia and the pacific fact sheet | decentralized energy system.pdf», p.1, Available on: https://www.unescap.org/sites/default/files/14.%20FS-Decentralized-energy-system.pdf [Google Scholar]
  3. «Low carbon green growth road map for Asia and the pacific fact sheet | decentralized energy system.pdf», p.2–3, Available on: https://www.unescap.org/sites/default/files/14.%20FS-Decentralized-energy-system.pdf [Google Scholar]
  4. W. Schellong, T. Schmidla, I. Stadler, F. Strümpler, Integration of cogeneration systems into smart grids, In International Symposium on Power Electronics Power Electronics, Electrical Drives, Automation and Motion (pp. 1422–1427). IEEE. (2012, June). [Google Scholar]
  5. C. Bergaentzlé, I.G. Jensen, K. Skytte, O.J. Olsen, Electricity grid tariffs as a tool for flexible energy systems: A Danish case study, Energy Policy, 126, 1221, (2019). [Google Scholar]
  6. V. Bakker, A. Molderink, M.G. Bosman, J.L. Hurink, G.J. Smit, On simulating the effect on the energy efficiency of smart grid technologies. In Proceedings of the 2010 Winter Simulation Conference (pp. 393–404), IEEE, (2010, December). [Google Scholar]
  7. «Mountain Power solutions | the benefits of decentralized power production», Available on: http://mountainpowersolutions.com/the-benefits-of-decentralized-power-production/ [Google Scholar]
  8. «2009 - science for environment policy | Is decentralization the jUture of sustainable energy?.pdf», Available on: https://ec.europa.eu/environment/integration/research/newsalert/pdf/145na4_en.pdf [Google Scholar]
  9. G. Guérard, Optimisation de la diffusion de l'énergie dans les smart grids, thèse de doctorat, (2014) [Google Scholar]
  10. C. Petermann, S. Ben Amor et A. Bui, Approches théoriques pour la modélisation efficace de smart grid, Société française de recherche opérationnelle et d'aide à la décision, (2012) [Google Scholar]
  11. H.K. Nguyen, J.B. Song, Z. Han, Demand side management to reduce peak-to-average ratio using game theory in smart grid, In 2012 Proceedings IEEE INFOCOM Workshops (pp. 91–96), IEEE, (2012, March) [Google Scholar]
  12. H.T. Zhang, F.Y. Xu, L. Zhou, Artificial neural network for load forecasting in smart grid, In 2010 International Conference on Machine Learning and Cybernetics (Vol. 6, pp. 3200–3205), IEEE, (2010, July). [Google Scholar]
  13. X. He, T. Huang, C. Li, H. Che, Z. Dong, A recurrent neural network for optimal real-time price in smart grid, Neurocomputing, 149, 608–612, (2015). [Google Scholar]
  14. F. Mountassir, R. Mali et M. Bousmah, Machine learning au service de la prédiction de la demande d'énergie dans les smart grid, in Mediterranean Telecommunications Journal, vol. 8, n° 2, (2018). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.