Open Access
Issue
E3S Web Conf.
Volume 297, 2021
The 4th International Conference of Computer Science and Renewable Energies (ICCSRE'2021)
Article Number 01070
Number of page(s) 4
DOI https://doi.org/10.1051/e3sconf/202129701070
Published online 22 September 2021
  1. L. Kaufman and R.J. Rousseeuw, Finding Groups Data: an Introduction to Cluster Analysis. John Wiley & Sons, 1990. [Google Scholar]
  2. H.C. Romesburg, Cluster Analysis for Researchers. Lifetime Learning Publications, Belmont, CA, 1984. [Google Scholar]
  3. J.A. Hartigan, Direct Clustering of a Data Matrix. Journal of the American Statistical Association, 67:337, 123–129, 1972. [Google Scholar]
  4. E. Vigneau and E.M. Qannari, Clustering of Variables Around Latent Components. Communications in Statistics: Simulation and Computation, 32(4), 1131–1150, 2003. [Google Scholar]
  5. C. Wang, M. Chen, E. Schifano, J. Wu and J. Yan, Statistical methods and computing for big data. Statistics and its interface, 9(4), 399–414, 2016. [CrossRef] [PubMed] [Google Scholar]
  6. A.M. El-Mandouh, H.A. Mahmoud, L.A. Abd-Elmegid and M.H. Haggag, Big Data Clustering Model based on Fuzzy Gaussian. International Journal of Computer Science and Information Security (IJCSIS), Vol. 16, No. 4, 2018. [Google Scholar]
  7. C. Sreedhar, N. Kasiviswanath and P.C. Reddy, Clustering large datasets using K-means modified inter and intra clustering (KM-I2C) in Hadoop. Journal of Big Data, no. 1, 4–27, 2017. [Google Scholar]
  8. S.F. Hussain, M. Haris, Ak-means based Coclustering (kCC) Algorithm for Sparse, High Dimensional Data, Expert Systems With Applications (2018) [PubMed] [Google Scholar]
  9. M. Chavent, V. Kuentz and J. Saracco, A partitioning method for the clustering of categorical variables. Classification as a Tool for Research, Springer, 91–99, 2010 [Google Scholar]
  10. J. Saracco, M. Chavent and V. Kuentz, Clustering of categorical variables around latent variables. Working Papers of GREThA, n2010–02, http://ideas.repec.org/p/grt/wpegrt/2010-02.html, 2010. [Google Scholar]
  11. M. Chavent, V. Kuentz, B. Liquet and J. Saracco, ClustOfVar: An R Package for the Clustering of Variables. Journal of Statistical Software, University of California, Los Angeles, 50(13), 116, 2012. [Google Scholar]
  12. E. Vigneau, M. Chen and E.M. Qannari, ClustVarLV: an R package for the clustering of variables around latent variables. The R Journal, 7(2), 134–148, 2015. [Google Scholar]
  13. T. Zhang and B. Yang, Big Data Dimension Reduction Using PCA. In Proceedings of the 2016 IEEE International Conference on Smart Cloud (SmartCloud), New York, NY, USA, 152–157, 2016. [Google Scholar]
  14. E. Forgy. Cluster analysis of multivariate data: efficiency vs. interpretability of classifications. Biometrics, 21, pp. 768–769. 1965. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.