Open Access
E3S Web Conf.
Volume 299, 2021
4th Annual International Conference on Energy Development and Environmental Protection (EDEP 2021)
Article Number 02004
Number of page(s) 8
Section Environmental Science and Engineering
Published online 05 August 2021
  1. A. Bonnaccorsi, “On the Relationship between Firm Size and Export Intensity,” Journal of International Business Studies, 23 (4), pp. 605–635, 1992. (journal style) [CrossRef] [Google Scholar]
  2. R. Caves, Multinational Enterprise and Economic Analysis, Cambridge University Press, Cambridge, 1982. (book style) [Google Scholar]
  3. M. Clerc, “The Swarm and the Queen: Towards a Deterministic and Adaptive Particle Swarm Optimization,” In Proceedings of the IEEE Congress on Evolutionary Computation (CEC), pp. 1951–1957, 1999. (conference style) [Google Scholar]
  4. H.H. Crokell, “Specialization and International Competitiveness,” in Managing the Multinational Subsidiary, H. Etemad and L.S. Sulude (eds.), Croom-Helm, London, 1986. (book chapter style) [Google Scholar]
  5. K. Deb, S. Agrawal, A. Pratab, T. Meyarivan, “A Fast Elitist Non-dominated Sorting Genetic Algorithms for Multiobjective Optimization: NSGA II,” KanGAL report 200001, Indian Institute of Technology, Kanpur, India, 2000. (technical report style) [Google Scholar]
  6. J. Geralds, “Sega Ends Production of Dreamcast,”, para. 2, Jan. 31, 2001. [Online]. Available: [Accessed: Sept. 12, 2004]. (General Internet site) [Google Scholar]
  7. ingle-Crystal-Superalloy-CMSX-4%C2%AE-Plus-SLS.pdf [Google Scholar]
  8. Walsh J. M., “Characterization of Nickel-Base Superalloy Fracture Surfaces by Auger Electron Spectroscopy,” Proceedings of the First Intenational Symposium of Superalloys, Warrendale, Pennsylvania, John Wiley & Sons, Inc. pp. 127–136, 1976. [Google Scholar]
  9. Xie X., “The Role of Phosphorus and Sulfur in Inconel 718”, Proceedings of the Eighth Intenational Symposium of Superalloys, Warrendale, Pennsylvania, John Wiley & Sons, Inc. pp. 599–606, 1996. [Google Scholar]
  10. Kandaskalov D., “First-principles study of sulfur multi-absorption in nickel and its segregation to the Ni(100) and Ni(111) surfaces”, Surface Science, 617, pp. 15–21, 2013. [CrossRef] [Google Scholar]
  11. Dong N., “Stress effects on stability and diffusion behavior of sulfur impurity in nickel: A first-principles study”, Computational Materials Science, 90, pp. 137–142, 2014. [CrossRef] [Google Scholar]
  12. Peng L., “Site preference of S-doping and its influence on the properties of a Ni/Ni3Al interface”, Modelling & Simulation in Materials Science & Engineering, 19(6): 065002, 2011. [CrossRef] [Google Scholar]
  13. Han Y. B., “Grain Boundary Segregation and Mechanical Properties of an Aged Ni-20Cr-18W-1Mo Superalloy at Different Temperatures”, Rare Metal Materials & Engineering, 45(12), 3043–3049 2016. [CrossRef] [Google Scholar]
  14. Yamaguchi M., “Grain Boundary Decohesion by Sulfur Segregation in Ferromagnetic Iron and Nickel & mdash A First-Principles Study & mdash”, Materials Transactions, 47(11), 2682–2689 2006. [CrossRef] [Google Scholar]
  15. Sun C., “Sulphur distribution in K24 cast nickel-base superalloy and its influence on mechanical properties”, High Temperature Technology, 6(3), 145–148 1988. [CrossRef] [Google Scholar]
  16. Chen K., “Sulfur embrittlement on y/y' interface of Ni-base single crystal superalloys”, Acta Materialia, 51(4), 1079–1086 2003. [CrossRef] [Google Scholar]
  17. Yong J., “Gettering of S in Ni from first principles”, Scripta Materialia, 62(10), 782–785 2010. [CrossRef] [Google Scholar]
  18. Zhou L. Z., “Effect of trace sulfur on microstructure and properties of K4169 alloy”, Acta Metallurgica Sinica, 31(6), 261–265 1995. [Google Scholar]
  19. Joh Y., “Effect of Sulfur on Creep Strength of Ni-Base Single-Crystal Superalloy, TMS-1700”, Materials Transactions, 57(8), 1305–1308 2016. [CrossRef] [Google Scholar]
  20. Li C. X., “First-principles study of the effects of selected interstitial atoms on the generalized stacking fault energies, strength, and ductility of Ni”, Chinses Physics B, 23(11), pp. 117102, 2014. [CrossRef] [Google Scholar]
  21. Schusteritsch G., “Sulfur-induced embrittlement of nickel: a first-principles study”, Modelling & Simulation in Materials Science & Engineering 20(6), 065007, 2012. [CrossRef] [Google Scholar]
  22. Hajilou T., “Hydrogen-enhanced intergranular failure of sulfur-doped nickel grain boundary: In situ electrochemical micro-cantilever bending vs. DFT”, Materials Science and Engineering A, 794, pp. 139967, 2020. [CrossRef] [Google Scholar]
  23. Wang L. G., “Effect of boron and sulphur on the electronic structure of grain boundaries in Ni” Computational Materials Science, 11(4), 261–269 1998. [CrossRef] [Google Scholar]
  24. Yamaguchi M., “Grain Boundary Decohesion by Impurity Segregation in a Nickel-Sulfur System”, Science, 307, pp. 393–397, 2005. [CrossRef] [PubMed] [Google Scholar]
  25. Kart H., “DFT studies of sulfur induced stress corrosion cracking in nickel”, Computational Materials Science, 44, pp. 1236–1242, 2009. [CrossRef] [Google Scholar]
  26. Vsianska M., “The effect of segregated sp-impurities on grain-boundary and surface structure, magnetism and embrittlement in nickel”, Progress in Materials Science, 56(6), pp. 817–840. [CrossRef] [Google Scholar]
  27. Vsianska M., “Magnetically dead layers at sp-impurity-decorated grain boundaries and surfaces in nickel”, Physical review. B, Condensed matter, 84(1), 3214–3219 2011. [CrossRef] [Google Scholar]
  28. Chen H. P., “Embrittlement of Metal by Solute Segregation-Induced Amorphization”, Physical Review Letters, 104, 155502, 2010. [CrossRef] [PubMed] [Google Scholar]
  29. Hu T., “Role of disordered bipolar complexions on the sulfur embrittlement of nickel general grain boundaries”, Nature Communications, 9, pp. 2764–2774, 2018. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.