Open Access
Issue
E3S Web Conf.
Volume 299, 2021
4th Annual International Conference on Energy Development and Environmental Protection (EDEP 2021)
Article Number 02010
Number of page(s) 6
Section Environmental Science and Engineering
DOI https://doi.org/10.1051/e3sconf/202129902010
Published online 05 August 2021
  1. G. Yu, C. Du, T. Sun. Thermodynamic Behaviors of a kind of Self-Decoupling Magnetorheological Damper. Shock and Vibration. 2015, Article Number: 502747. [Google Scholar]
  2. S. Mazlan, I. Ismail, H. Zamzuri, et al. Compressive and tensile stresses of magnetorheological fluids in squeeze mode. Int J App Electrom Mech, 2011(4), Vol.36:327–337. [Google Scholar]
  3. A. Olabi, A. Grunwald. Design and application of magneto-rheological fluid. Material & Design, 2007(10), Vol.28:2658–2664. [Google Scholar]
  4. H. Jiang, J. Ge, G. Yu, B. Su, T. Sun. Study on Radial, Axial and Shear Mechanics Properties of Single-walled Carbon Nanotubes by Finite Element Analysis. Journal of Computational and Theoretical Nanoscience. 2017(6), Vol. 14:P2596–2600. [Google Scholar]
  5. J. Ge, C. Jiang, G. Yu, B. Su, T. Sun. Preparation and Research on a Kind of Magnetorheological Grease Materiel Used Anti-Collision System. Materials Science Forum. 2017, Vol. 893:P395–399. [Google Scholar]
  6. Y. Wang, Q. Luo, H. Liu, et al. Aggregated chain morphological variation analysis of magnetorheological fluid (MRF) in squeeze mode. Smart Material an Structures, 2019(10), Vol.28:1–9. [Google Scholar]
  7. D. Li, D. Keogh, D. Huang, et al. Modeling the Response of Magnetorheological Fluid Dampers under Seismic Conditions. Applied Sciences-Basel, 2019(19), Vol. 9:41–89. [Google Scholar]
  8. Y. Liang, J. Alvarado, K. Iagnemma, et al. Dynamic Sealing Using Magnetorheological Fluids. Physical Review Applied, 2018(6), Vol. 10. [Google Scholar]
  9. Z. Tian, X. Wu, X. Xiao, et al. Influence of Temperature on Torque Transmission Stability of Magnetorheological Fluid. Journal of Magnetics, 2018(4), Vol.23:529–535. [Google Scholar]
  10. H. Seugyong, K. Kwanglok, K. Kwangmin, et al. 45.5-tesla direct-current magnetic field generated with a high-temperature superconducting magnet. Nature. 2019, Vol.570:496–499. [Google Scholar]
  11. X. Xu, W. Koshebae, Y. Tokunaga, et al. Transformation between meron and skyrmion topological spin textures in a chiral magnet. Nature. 2019(7743), Vol. 564. [Google Scholar]
  12. I. Belopolski, K. Manna, D. Sanchez, et al. Discovery of topological Weyl fermion lines and drumhead surface states in a room temperature magnet. Science. 2019(6459), Vol. 365:1278. [Google Scholar]
  13. T. Kurumaji, T. Nakajima, M. Hirschberger, et al. Skyrmion lattice with a giant topological Hall effect in a frustrated triangular-lattice magnet. Science. 2019(6456), Vol.365:914–919. [Google Scholar]
  14. R. Ahamed SB et al. A state of art on magneto-rheological materials and their potential applications. Journal of Intelligent Material S. Choi, M. Ferdaus,ystem and Structures, 2018(10), Vol.29:2051–2095. [Google Scholar]
  15. H. Wang, G. Zhang, J. Wang, et al. Normal force of lithium-based magnetorheological grease under quasi-static shear with large deformation. Rsc Advances, 2019(47), Vol.9:27167–27175. [Google Scholar]
  16. J. Ge, H. Jiang, Z. Sun, G. Yu, B. Su, T. Sun. Calculating Mechanics Characteristics of Single-walled Carbon Nanotube Materials by Finite Element Method. Key Engineering Materials. 2017, Vol. 730:P548–553. [Google Scholar]
  17. X. Zhang, R. Wu, K. Guo, et al. Dynamic characteristics of magnetorheological fluid squeeze flow considering wall slip and inertia. Journal of Intelligent Material System and Structures, 2019, Article Number: UNSP 1045389X19888781. [Google Scholar]
  18. T.H. Sun, J. Ge, Z. Jia, N. Huang. Preparation of Magnetorheological Greases and Study Their Rheological Characteristics Considering the Variety of Factors. International Journal of Materials Engineering. 2019(2), Vol. 9:P34–38. [Google Scholar]
  19. H. Wang, Y. Li, G. Zhang, et al. Effect of temperature on rheological properties of lithium-based magnetorheological grease. Smart Materials and Structures, 2019(3), Vol. 28, Article Number:035002. [Google Scholar]
  20. J. Zheng, Y. Li, J. Wang, et al. Accelerated thermal aging of grease-based magnetorheological fluids and their lifetime prediction. Materials Research Express, 2018(8), Vol. 5, Article Number:085702. [Google Scholar]
  21. T.H. Sun, J. Ge, K. Tan, Y. Wu, Z. Jia, Y. Chen, C. Liu. Research on the Mechanism of a Thermistor-type Electronic Thermostat. International Journal of Innovative Studies in Sciences and Engineering Technology. 2019(12), Vol. 5: P34–37. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.