Open Access
Issue
E3S Web Conf.
Volume 300, 2021
2021 2nd International Conference on Energy, Power and Environmental System Engineering (ICEPESE2021)
Article Number 01003
Number of page(s) 15
Section Energy and Power Engineering
DOI https://doi.org/10.1051/e3sconf/202130001003
Published online 06 August 2021
  1. P. S. M. Research, “Energy Storage Market to Reach $26, 137 Million by 2022, ” ed: Globe Newswire, 2017. [Google Scholar]
  2. P. Maloney, “Global energy storage market to hit 8.8 GW by 2025, IHS Markit says, ” ed: Utility Dive, 2017. [Google Scholar]
  3. IEA(2020), “Energy Storage, ” IEA, Paris, June, 2020, Available: https://www.iea.org/reports/energy-storage. [Google Scholar]
  4. S. E. C. (2018), “Australian Energy Storage market Analysis, ” Smart Energy CouncilSep, 2018, Available: https://www.smartenergy.org.au/sites/default/files/uploaded-content/field_f_content_file/australian_energy_storage_market_analysis_report_sep18_final.pdf. [Google Scholar]
  5. C. Heymans, S. B. Walker, S. B. Young, and M. J. E. P. Fowler, “Economic analysis of second use electric vehicle batteries for residential energy storage and load-levelling, ” vol. 71, pp. 22-30, 2014. [Google Scholar]
  6. A. Assunção, P. S. Moura, and A. T. J. A. E. de Almeida, “Technical and economic assessment of the secondary use of repurposed electric vehicle batteries in the residential sector to support solar energy, ” vol. 181, pp. 120-131, 2016. [Google Scholar]
  7. J. Neubauer and A. J. J. O. P. S. Pesaran, “The ability of battery second use strategies to impact plug-in electric vehicle prices and serve utility energy storage applications, ” vol. 196, no. 23, pp. 10351-10358, 2011. [Google Scholar]
  8. S. J. Tong, A. Same, M. A. Kootstra, and J. W. J. A. E. Park, “Off-grid photovoltaic vehicle charge using second life lithium batteries: An experimental and numerical investigation, ” vol. 104, pp. 740-750, 2013. [Google Scholar]
  9. I. (2020), “Global EV Outlook 2020, ” IEA, Paris, 2020, Available: https://www.iea.org/reports/global-ev-outlook-2020. [Google Scholar]
  10. N. Jiao, “Second-life Electric Vehicle Batteries 2020-2030, ” IDTechEx, 2020, Available: https://www.idtechex.com/en/research-report/second-life-electric-vehicle-batteries-2020-2030/681. [Google Scholar]
  11. Y. Miao, P. Hynan, A. von Jouanne, and A. J. E. Yokochi, “Current Li-ion battery technologies in electric vehicles and opportunities for advancements, ” vol. 12, no. 6, p. 1074, 2019. [Google Scholar]
  12. G. Albright, J. Edie, and S. J. A. E. E. I. Al-Hallaj, “A comparison of lead acid to lithiumion in stationary storage applications, ” 2012. [Google Scholar]
  13. P. batteries, “Lithium Ferro Phosphate Batteries vs. VRLA Batteries, ” Available: https://uploadsssl.webflow.com/5c51a75716d83a29793c37d9/5c875720506b27a023dff7d0_lithiumferro-phosphate-batteries-vs-vrla-batteries.pdf. [Google Scholar]
  14. N. Omar et al., “Lithium iron phosphate based battery–Assessment of the aging parameters and development of cycle life model, ” vol. 113, pp. 1575-1585, 2014. [Google Scholar]
  15. L. I. B. T. C. (2020), “Battery Testing Report 9, ” ITP Renewables, Sep, 2020, Available: https://batterytestcentre.com.au/wpcontent/uploads/BatteryTestingReport9Sept2020.pdf. [Google Scholar]
  16. R. H. Byrne, T. A. Nguyen, D. A. Copp, B. R. Chalamala, and I. J. I. A. Gyuk, “Energy management and optimization methods for grid energy storage systems, ” vol. 6, pp. 13231-13260, 2017. [Google Scholar]
  17. L. I. B. T. Centre, “Lithium Ion, ” Available: https://batterytestcentre.com.au/project/lithium-ion/. [Google Scholar]
  18. A. (2019), “2019 Costs and Technical Parameter Review, ” AEMO, Dec 10, 2019, Available: https://www.aemo.com.au/-/media/Files/Electricity/NEM/Planning_and_Forecasting/Inputs-AssumptionsMethodologies/2019/Aurecon-2019-Cost-and-Technical-Parameters-Review-DraftReport.PDF. [Google Scholar]
  19. S. Tong, T. Fung, M. P. Klein, D. A. Weisbach, and J. W. J. J. O. E. S. Park, “Demonstration of reusing electric vehicle battery for solar energy storage and demand side management, ” vol. 11, pp. 200-210, 2017. [Google Scholar]
  20. L. Ahmadi, A. Yip, M. Fowler, S. B. Young, R. A. J. S. E. T. Fraser, and Assessments, “Environmental feasibility of reuse of electric vehicle batteries, ” vol. 6, pp. 64-74, 2014. [Google Scholar]
  21. J. Neubauer, A. Pesaran, B. Williams, M. Ferry, and J. Eyer, “Techno-economic analysis of PEV battery second use: Repurposed-battery selling price and commercial and industrial end-user value, ” National Renewable Energy Lab.(NREL), Golden, CO (United States)0148-7191, 2012. [Google Scholar]
  22. L. Ahmadi et al., “Energy efficiency of Li-ion battery packs reused in stationary power applications, ” vol. 8, pp. 9-17, 2014. [Google Scholar]
  23. L. Ahmadi, S. B. Young, M. Fowler, R. A. Fraser, and M. A. J. T. I. J. O. L. C. A. Achachlouei, “A cascaded life cycle: reuse of electric vehicle lithium-ion battery packs in energy storage systems, ” vol. 22, no. 1, pp. 111-124, 2017. [Google Scholar]
  24. D. E. (2015), “DTE Energy Advanced Implementation of Energy Storage Technologies, ” DTE Energy, 2015, Available: https://www.smartgrid.gov/files/documents/OE0000229_DTE_FinalRep_2016_03_16.pdf. [Google Scholar]
  25. L. I. B. T. Centre, “Retired Batteries, ” ITP Renewables, Available: https://batterytestcentre.com.au/retired-batteries/. [Google Scholar]
  26. U. K. Debnath, I. Ahmad, D. J. I. J. o. E. P. Habibi, and E. Systems, “Quantifying economic benefits of second life batteries of gridable vehicles in the smart grid, ” vol. 63, pp. 577-587, 2014. [Google Scholar]
  27. X. Zhao, Y. Zeng, and D. J. E. Zhao, “Distributed solar photovoltaics in China: Policies and economic performance, ” vol. 88, pp. 572-583, 2015. [Google Scholar]
  28. K. Mongird et al., “Energy storage technology and cost characterization report, ” Pacific Northwest National Lab.(PNNL), Richland, WA (United States) 2019. [Google Scholar]
  29. M. Kleinberg, “Battery energy storage study for the 2017 IRP, ” ed: Pacificorp, 2016. [Google Scholar]
  30. V. J. P. F. T. N. R. E. L. Black, “Cost and performance data for power generation technologies, ” 2012. [Google Scholar]
  31. T. Aquino, M. Roling, C. Baker, and L. J. P. R. P. A. F. C. Rowland, CO, USA, “Battery Energy Storage Technology Assessment, ” p. 8, 2017. [Google Scholar]
  32. R. Sioshansi, P. Denholm, T. Jenkin, and J. J. E. E. Weiss, “Estimating the value of electricity storage in PJM: Arbitrage and some welfare effects, ” vol. 31, no. 2, pp. 269-277, 2009. [Google Scholar]
  33. S. P. N. (2020), “2020-25 Tariff Structure Statement Part A, ” SA Power Networks June 2020, Available: https://www.sapowernetworks.com.au/public/download.jsp?id=9508. [Google Scholar]
  34. A. (2015), “Guide to Ancillary Services in the National Electricity Market, ” AEMOApril, 2015, Available: https://www.aemo.com.au/-/media/Files/PDF/Guide-to-Ancillary-Services-in-the-National-Electricity-Market.pdf. [Google Scholar]
  35. A. (2019), “Battery Energy Storage System Requirements for Contingency FCAS Registration, ” AEMO Operations Department – Systems Performance & Commercial, Jan 14, 2019, Available: https://www.aemo.com.au/-/media/Files/Electricity/NEM/Security_and_Reliability/Ancillary_Services/BatteryEnergy-Storage-System-requirements-for-contingency-FCAS-registration.pdf. [Google Scholar]
  36. A. (2019), “Large-Scale Battery Storage Knowledge Sharing Report, ” ARENASep, 2019, Available: https://arena.gov.au/assets/2019/11/large-scale-battery-storage-knowledgesharing-report.pdf. [Google Scholar]
  37. A. (2019), “Regulation FCAS changes, ” AEMO2019, Available: https://aemo.com.au/-/media/Files/Electricity/NEM/Security_and_Reliability/Ancillary_Services/Frequencyand-time-error-reports/Regulation-FCAS-factsheet.pdf. [Google Scholar]
  38. A. (2019), “Hornsdale Power Reserve Year 1 Technical and Market Impact Case Study, ” Aurecon 2019, Available: https://www.aurecongroup.com/-/media/files/downloads-library/thought-leadership/aurecon-hornsdale-power-reserve-impact-study-2018.pdf. [Google Scholar]
  39. M. i. (2019), “Tesla Battery in Australian NEM, ” Market Quality Dashboard2019, Available: https://www.mqdashboard.com/insight/case_study_public/Tesla+Battery+in+the+Australian+NEM. [Google Scholar]
  40. G. Desarnaud, “The second life battery cycle: after about 10 years in vehicle, lithium-ion batteries can be reused for another purpose and thereby begin a “second life”, ” CapgeminiApr 18, 2019, Available: https://www.capgemini.com/2019/04/second-life-batteries-a-sustainable-business-opportunity-not-a-conundrum/. [Google Scholar]
  41. B. Bai, S. Xiong, B. Song, M. J. R. Xiaoming, and S. E. Reviews, “Economic analysis of distributed solar photovoltaics with reused electric vehicle batteries as energy storage systems in China, ” vol. 109, pp. 213-229, 2019. [Google Scholar]
  42. S. P. N. (2019), “Tariff Price List, ” SA Power NetworksJul 31, 2020, Available: https://www.sapowernetworks.com.au/public/download.jsp?id=315323. [Google Scholar]
  43. C. E. Institude, “LIthium-ion Battery, ” University of Washington, Available: https://www.cei.washington.edu/education/science-of-solar/battery-technology/. [Google Scholar]
  44. X. Wang, G. Gaustad, C. W. Babbitt, K. J. R. Richa, Conservation, and Recycling, “Economies of scale for future lithium-ion battery recycling infrastructure, ” vol. 83, pp. 53-62, 2014. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.