Open Access
Issue
E3S Web Conf.
Volume 302, 2021
2021 Research, Invention, and Innovation Congress (RI2C 2021)
Article Number 01002
Number of page(s) 10
Section Energy Technology
DOI https://doi.org/10.1051/e3sconf/202130201002
Published online 10 September 2021
  1. S.G. Sahu, N. Chakraborty, P. Sarkar, Coal-biomass co-combustion: An overview, Renewable and Sustainable Energy Reviews, 39, (2014): 575-586 [Google Scholar]
  2. A. Hamisu, U.I. Gaya, Bi-template assisted sol-gel synthesis of photocatalytically-active mesoporous anatase TiO2 nanoparticles, Applied Science and Engineering Progress, Online First, (2021): 1-15 [Google Scholar]
  3. B. Ashok, M. Umamahesh, N. Hariram, S. Siengchin, A.V. Rajulu, Modification of waste leather trimming with in situ generated silver nanoparticles by one step method, Applied Science and Engineering Progress, 14, (2021): 236-246 [Google Scholar]
  4. M. Wzorek, R. Junga, E. Yilmaz, P. Niemiec, Combustion behavior and mechanical properties of pellets derived from blends of animal manure and lignocellulosic biomass, Journal of Environmental Management, 290, (2021): 112487 [PubMed] [Google Scholar]
  5. M.V. Gil, D. Casal, C. Pevida, J.J. Pis, F. Rubiera, Thermal behaviour and kinetics of coal/biomass blends during co-combustion, Bioresource Technology, 101, (2010): 5601-5608 [PubMed] [Google Scholar]
  6. Z. Liu, A. Quek, S. Kent Hoekman, M.P. Srinivasan, R. Balasubramanian, Thermogravimetric investigation of hydrochar-lignite co-combustion, Bioresource Technology, 123, (2012): 646-652 [PubMed] [Google Scholar]
  7. A. Toptas, Y. Yildirim, G. Duman, J. Yanik, Combustion behavior of different kinds of torrefied biomass and their blends with lignite, Bioresource Technology, 177, (2015): 328-336 [PubMed] [Google Scholar]
  8. F. Gyo, Z. Zhong, Optimization of the cocombustion of coal and composite biomass pellets, Journal of Cleaner Production, 185, (2018): 399-407 [Google Scholar]
  9. F. Guo, Y. He, A. Hassanpour, J. Gardy, Z. Zhong, Thermogravimetric analysis on the co-combustion of biomass pellets with lignite and bituminous coal, Energy, 197, (2020): 117147 [Google Scholar]
  10. S. Qi, Z. Wang, M. Costa, Y. He, K. Cen, Ignition and combustion of single pulverized biomass and coal particles in N2/O2 and CO2/O2 environments, Fuel, 283, (2021): 118956 [Google Scholar]
  11. S. Vyazovkin, A.K. Burnham, J.M. Criado, L.A. Perez-Maqueda, C. Popescu, N. Sbirrazzuoli, ICTAC kinetics committee recommendations for performing kinetic computations on thermal analysis data, Thermochimica Acta, 520, (2011): 1-19 [Google Scholar]
  12. P. Jongpradist, W. Homtragoon, R. Sukkarak, W. Kongkitkul, P. Jamsawang, Efficiency of rick husk ash as cementitious materials in high-strength cement-admixed clay, Advances in Civil Engineering, 2018, (2018): Article ID 8346319, 11 pages [Google Scholar]
  13. G. Wang, J. Zhang, J. Shao, Z. Liu, G. Zhang, T. Xu, J. Guo, H. Wang, R. Xu, H. Lin, Thermal behavior and kinetic analysis of co-combustion of waste biomass/low rank coal blends, Energy Conversion and Management, 124, (2016): 414-426 [Google Scholar]
  14. X.G. Li, Y. Lv, B.G. Ma, S.W. Jian, H.B. Tan, Thermogravimetric investigation on co-combustion characteristics of tobacco residue and high-ash anthracite coal, Bioresource Technology, 102, (2011): 9783-9787 [PubMed] [Google Scholar]
  15. A. Dashti, A.S. Noushabadi, M. Raji, A. Razmi, S. Ceylan, A.H. Mohammadi, Estimation of biomass higher heating value (HHV) based on the proximate analysis: Smart modelling and correlation, Fuel, 257, (2019): 115931 [Google Scholar]
  16. D. Vamvuka, S. Sfakiotakis, Combustion behaviour of biomass fuels and their blends with lignite, Thermochimica Acta, 526, (2011): 192-199 [Google Scholar]
  17. J.-J. Lu, W.-H. Chen, Investigation on the ignition and burnout temperatures of bamboo and sugarcane bagasse by thermogravimetric analysis, Applied Energy, 160, (2015): 49-57 [Google Scholar]
  18. S.Y. Luo, B. Xiao, Z.Q. Hu, S.M. Liu, Y.W. Guan, Experimental study on oxygen-enriched combustion of biomass micro fuel, Energy, 34, (2009): 18801884 [Google Scholar]
  19. Y. Lin, Y. Liao, Z. Yu, S. Fang, X. Ma, The investigation of co-combustion of sewage sludge and oil shale using thermogravimetric analysis, Thermochimica Acta, 653, (2017): 71-78 [Google Scholar]
  20. K. Jayaraman, M.V. Kok, I. Gokalp, Combustion mechanism and model free kinetics of different origin coal samples: Thermal analysis approach, Energy, 204, (2020): 117905 [Google Scholar]
  21. C. Chen, S. Qin, F. Chen, Z. Lu, Z. Cheng, Cocombustion characteristics study of bagasse, coal and their blends by thermogravimetric analysis, Journal of the Energy Institute, 92, (2019): 364-369 [Google Scholar]
  22. K. Cong, F. Han, Y. Zhang, Q. Li, The investigation of co-combustion characteristics of tobacco stalk and low rank coal using a macro-TGA, Fuel, 237, (2019): 126-132 [Google Scholar]
  23. B. Mahanta, A. Saikia, U.N. Gupta, P. Saikia, B.K. Saikia, J. Jayaramudu, P.S. Sellamuthu, E.R. Sadiku, Study of low-rank high sulphur coal fine with biomass, Current Research in Green and Sustainable Chemistry, 3, (2020): 100023 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.