Open Access
E3S Web Conf.
Volume 302, 2021
2021 Research, Invention, and Innovation Congress (RI2C 2021)
Article Number 01008
Number of page(s) 6
Section Energy Technology
Published online 10 September 2021
  1. S. Li et al., Oxidative reactivity enhancement for soot combustion catalysts by co-doping silver and manganese in ceria, Applied Catalysis A: General., 570, (2019):299–307 [Google Scholar]
  2. S. N. K. Reddy and M. M. Wani, A comprehensive review on effects of nanoparticles-antioxidant additives-biodiesel blends on performance and emissions of diesel engine, Applied Catalysis A: General., 13, 4(2020): 285–298 [Google Scholar]
  3. B. Sawatmongkhon et al., Catalytic oxidation of diesel particulate matter by using silver and ceria supported on alumina as the oxidation catalyst, Appl. Applied Catalysis A: General., 574, (2020): 33–40 [Google Scholar]
  4. K. Krishna, A. Bueno-López, M. Makkee, and J. A. Moulijn, Potential rare earth modified CeO2 catalysts for soot oxidation. I. Characterisation and catalytic activity with O2, Applied Catalysis B: Environmental., 75, 3–4 (2007): 189–200, 2007 [Google Scholar]
  5. J. Zokoe and P. J. McGinn, Catalytic diesel soot oxidation by hydrothermally stable glass catalysts, Chemical Engineering Journal, 262, (2015): 68–77 [Google Scholar]
  6. R. Matarrese, L. Castoldi, and L. Lietti, Oxidation of model soot by NO2 and O2 in the presence of water vapor, Chemical Engineering Science., 173, 2(2017): 560–569 [Google Scholar]
  7. A. Bueno-López, Diesel soot combustion ceria catalysts, Applied Catalysis B: Environmental., 146, (2014): 1–11 [Google Scholar]
  8. T. S. Nguyen, F. Morfin, M. Aouine, F. Bosselet, J. L. Rousset, and L. Piccolo, Trends in the CO oxidation and PROX performances of the platinumgroup metals supported on ceria, Catalysis Today, 253, (2015): 106–114 [Google Scholar]
  9. M. S. Chen, Y. Cai, Z. Yan, K. K. Gath, S. Axnanda, and D. W. Goodman, Highly active surfaces for CO oxidation on Rh, Pd, and Pt, Surface Science., 601, 23(2007): 5326–5331 [Google Scholar]
  10. K. ichi Shimizu, H. Kawachi, and A. Satsuma, Study of active sites and mechanism for soot oxidation by silver-loaded ceria catalyst, Applied Catalysis B: Environmental., 96, 1–2 (2010): 169–175 [Google Scholar]
  11. L. Nossova, G. Caravaggio, M. Couillard, and S. Ntais, Effect of preparation method on the performance of silver-zirconia catalysts for soot oxidation in diesel engine exhaust, Applied Catalysis B: Environmental., 225, (2018): 538–549 [Google Scholar]
  12. E. Aneggi, J. Llorca, C. de Leitenburg, G. Dolcetti, and A. Trovarelli, Soot combustion over silversupported catalysts, Applied Catalysis B: Environmental., 91, 1–2 (2009): 489–498 [Google Scholar]
  13. L. Zeng, L. Cui, C. Wang, W. Guo, and C. Gong, Ag-assisted CeO2 catalyst for soot oxidation, Frontiers of Materials Science., 13, 3(2019): 288–295 [Google Scholar]
  14. M. Machida, Y. Murata, K. Kishikawa, D. Zhang, and K. Ikeue, On the reasons for high activity of CeO2 catalyst for soot oxidation, Chemistry of Materials., 20, 13(2008): 4489–4494 [Google Scholar]
  15. C. M. Álvarez-Docio, R. Portela, J. J. Reinosa, F. Rubio-Marcos, and J. F. Fernández, Pt mechanical dispersion on non-porous alumina for soot oxidation, Catal. Commun., 140, (2020) : 105999 [Google Scholar]
  16. M. J. Kim et al., CeO2 promoted Ag/TiO2 catalyst for soot oxidation with improved active oxygen generation and delivery abilities, J. Hazard. Mater., 384, (2020): 121341 [PubMed] [Google Scholar]
  17. H. Shimokawa, Y. Kurihara, H. Kusaba, H. Einaga, and Y. Teraoka, Comparison of catalytic performance of Agand K-based catalysts for diesel soot combustion, Catalysis Today, 185, 1(2012): 99–103 [Google Scholar]
  18. N. Zouaoui, M. Issa, D. Kehrli, and M. Jeguirim, CeO 2 catalytic activity for soot oxidation under NO/ O 2 in loose and tight contact, Catalysis Today, 189, 1(2012): 65–69 [Google Scholar]
  19. R. López-Fonseca, I. Landa, U. Elizundia, M. A. Gutiérrez-Ortiz, and J. R. González-Velasco, A kinetic study of the combustion of porous synthetic soot, Chemical Engineering Journal., 129, 1–3 (2007): 41–49 [Google Scholar]
  20. S. Vyazovkin, A. K. Burnham, J. M. Criado, L. A. Pérez-maqueda, C. Popescu, and N. Sbirrazzuoli, Thermochimica Acta ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data, Thermochimica Acta, 520, 1–2 (2011): 1–19 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.