Open Access
Issue
E3S Web Conf.
Volume 302, 2021
2021 Research, Invention, and Innovation Congress (RI2C 2021)
Article Number 01015
Number of page(s) 10
Section Energy Technology
DOI https://doi.org/10.1051/e3sconf/202130201015
Published online 10 September 2021
  1. P. Merlin Christy, L. R. Gopinath, D. Divya, A review on anaerobic decomposition and enhancement of biogas production through enzymes and microorganisms. Elsevier Renewable and Sustainable Energy Reviews, 34 (2014): 167–173. [Google Scholar]
  2. CEA, MNRE, Mercom India Solar Project Tracker, source: Mercom India Research, Installed Capacity and Capacity Utilization as on 31 Mar 2020, (2020). [Google Scholar]
  3. S.Z. Bibi, M. Qaisar, P. Arshid, Characteristics and Performance of Anaerobic Wastewater Treatment (A Review), Journal of the Chemical Society of Pakistan., 35, 1 (2013): 217-232 [Google Scholar]
  4. Y. Voegeli, C. Zurbrügg, Decentralised anaerobic digestion of kitchen and market waste in developing countries – “state-of-the-art” in south India, Proceedings Venice 2008, Second International Symposium on Energy from Biomass and Waste Venice, Environmental Sanitary Engineering Centre, Italy, 17-20 November 2008. [Google Scholar]
  5. P. Valerio, P. Francesco, S. Marco, T. Laura, N. Naja, C. Angelo, Environmental impact of biogas: A short review of current knowledge, Journal of Environmental Science and Health, Part A, 53, 10 (2018), 899–906 [Google Scholar]
  6. O.S. Joshua, G.J. Ejura, I.C. Bako, I.S. Gbaja, Y.I. Yusuf, Fundamental principles of biogas product, International Journal of Scientific Engineering and Research, 2, 8 (2014): 47–50. [Google Scholar]
  7. D. Divya, L. R. Gopinath, P. Merlin Christy, A review on Trends, Issues and Prospects for biogas production in Developing Countries, International Research Journal of Environmental Sciences, 3, 1 (2014): 62–69. [Google Scholar]
  8. G. Lyberatos, I.V. Skiadas, Modeling of anaerobic digestiona review. Global Nest: The international Journal, 1, 2 (1999): 63–76. [Google Scholar]
  9. D. Divya, L. R. Gopinath, S. Indran, Analysis of the effect of enzyme substitution on feedstock to enhance biogas production, International Journal of Research and Analytical Reviews, 6, 2 (2019): 964–973. [Google Scholar]
  10. Asian Biomass Handbook, Part 2, Biomass resources, University of Tokyo, Japan (2008). [Google Scholar]
  11. D. Divya, L. R. Gopinath, S. Sreeremya, S. Indran, Enhancement of Substrate Decomposition through Potential Hydrolytic Bacteria for Cumulative Biogas Production, International Journal of Applied Science and Biotechnology, 6, 4 (2018): 386–396. [Google Scholar]
  12. D.O. Hall, F. Rosillo-Calle, R.H. Williams, J. Woods, Biomass for energy: supply prospects, in Renewable Energy: Sources for Fuels and Electricity, (ed.) Johansson, T.B., Kelly, H., Reddy, A.K.N., and Williams, R.H., Washington, DC, Island Press, (1998): 593-651. [Google Scholar]
  13. P.C. Suryawanshi, A.B. Chudhari, S. Bhardwaj, T.Y. Yeole, T.Y. Operating procedures for efficient anaerobic digester operation. Research Journal of Animal, Veterninary and Animal Sciences ; Fishery Sciences, 1, 2 (2013): 12–15. [Google Scholar]
  14. S. Aliyu and A. Zahangir, Pretreatment Methods of Organic Wastes for Biogas Production, Journal of Applied Sciences., 16 (3) (2016): 124-137 [Google Scholar]
  15. A. Javkhlan Ariunbaatar, P. Antonio, E. Giovanni, P. Francesco, N.L.L. Piet, Pretreatment methods to enhance anaerobic digestion of organic solid waste, Applied Energy, 123, 15 (2014): 143-156 [Google Scholar]
  16. H.B. Gonzales, K. Takyu, H. Sakashita, Y. Nakano, W. Nishijima, M. Okada, Biological solubilization and mineralization as novel approach for the pretreatment of food waste, Chemosphere, 58 (2005): 57–63. [PubMed] [Google Scholar]
  17. J.W. Lim, J.Y. Wang, Enhanced hydrolysis and methane yield by applying microaeration pretreatment to the anaerobic co-digestion of brown water and food water, Waste Management, 33 (2013): 813–819. [Google Scholar]
  18. G.D. Saratale, S.D. Chen, Y.C. Lo, R.G. Saratale, J.S. Chang, Outlook of biohydrogen production from lignocellulosic feedstock using dark fermentationA review, Journal of Scientific and Industrial Research, 67 (2008): 962–979. [Google Scholar]
  19. F.R. Lucy, Pretreatment of feedstock for enhanced biogas production, IEA Bioenergy, First edition books, (2014). [Google Scholar]
  20. J. Perez, J. Munoz-Dorado, T. Rubia, J. Martinez, Biodegradation and biological treatments of cellulose, hemicelluloses and lignin: An overview, International Journal of Microbiology, 5 (2002): 53-63. [Google Scholar]
  21. U.G. Phutela, N. Sahni, S.S. Sooch, Fungal degradation of paddy straw for enhancing biogas production, Indian Journal of Science and Technology, 4, 6 (2011): 660–665. [Google Scholar]
  22. R. Manimegalai, L. R. Gopinath, P. Merlin Christy, D. Divya. Isolation and identification of acetogenic and methanogenic bacteria from anoxic black sediments and their role in biogas production, International Journal of Plant, Animal & Environmental Sciences, 4, 3 (2014): 156–164. [Google Scholar]
  23. L. R. Gopinath, P. Merlin Christy, K. Mahesh, R. Bhuvaneswari, D. Divya, Identification and evaluation of effective bacterial consortia for efficient biogas production, IOSR Journal of Environmental Science, Toxicology and Food Technology, 8, 3 (2014): 82–86. [Google Scholar]
  24. I.O. Okonko, O.T. Adeola, F.E. Aloysius, A.O. Damiola, O.A. Adewale, Utilization of food wastesfor sustainable development, Electronic Journal of Environmental Agricultural and Food Chemistry, 8, 4 (2009): 263–286. [Google Scholar]
  25. A.S. Fayyaz, M. Qaisar, M.H. Mohammad, P. Arshid, A.A. Saeed, Microbial ecology of anaerobic digesters: The key players of Anaerobiosis, The Scientific World Journal, (2014): 1–21. [Google Scholar]
  26. D. Divya, L. R. Gopinath, P. Merlin Christy, A review on current aspects and diverse prospects for enhancing biogas production in sustainable means, Renewable and Sustainable Energy Reviews, 42 (2015a): 690–699. [Google Scholar]
  27. W. Parawira, Enzyme research and applications in biotechnological intensification of biogas production, Critical Reviews in Biotechnology, (2011): 1–15. [Google Scholar]
  28. J. Rintala, B. Ahring, Thermophilic anaerobic digestion of source-sorted households solid waste: the effects of enzyme additions, Applied Microbiology and Biotechnology, 40 (1994): 916-919. [Google Scholar]
  29. J. Jeganathan, G. Nakhla, A. Bassi, Hydrolytic pretreatment of oily waste water by immobilized lipase, Journal of Hazardous Materials, 145 (2007): 127–135. [PubMed] [Google Scholar]
  30. C. Zhang, H. Su, J. Baeyens, T. Tan, Reviewing the anaerobic digestion of food waste for biogas production, Renewable and Sustainable Energy Reviews, 38 (2014): 383–392. [Google Scholar]
  31. H.J. Roman, J.E. Burgess, B.I. Pletschke, Enzyme treatment to decrease solids and improve digestion of primary sewage sludge, African Journal of. Biotechnology, 5 (2006): 963–967. [Google Scholar]
  32. S.K. Ahuja, G.M. Ferreira, A.R. Moreira, Utilization of enzymes for environmental applications, Critical Reviews in Biotechnology, 24 (2004): 125–154. [PubMed] [Google Scholar]
  33. T. Abbasi, S.M. Tauseef, A. Abbasi, Anaerobic digestion for global warming control and energy generationAn overview, Renewable and Journal of Plant, Animal and Environmental Sciences, 3, 4 (2013): 65–70. [Google Scholar]
  34. P. Merlin Christy, L. R. Gopinath, D. Divya. A review on decomposition as a technology for sustainable energy management, International Sustainable Energy Reviews, 16, 5 (2012): 3228–3242. [Google Scholar]
  35. H.M. EiMashad, G. Zeeman, W.K.P. Van Loon, G.P.A. Bot, G. Lettinga, Effect of temperature fluctuation on thermophilic anaerobic digestion of cattle manure, Bioresource Technology, 95 (2004): 191–201. [PubMed] [Google Scholar]
  36. E. Sanchez, R. Borja, P. Weiland, L. Travieso, A. Martin, Effect of substrate concentration and temperature on the anaerobic digestion of piggery waste in a tropical climate, Process Biochemistry, 37 (2001): 483–489. [Google Scholar]
  37. C. Gallert, S. Bauer, J. Winter, Effect of ammonia on the anaerobic degradation of protein by mesophilic and thermophilic biowaste, Applied Microbiology and Biotechnology, 50 (1998): 495–501. [PubMed] [Google Scholar]
  38. I. Apples, A.V. Assche, K. Willems, J. Degreve, J.V. Impe, R. Dewil, Peracetic acid oxidation as an alternative pre-treatment for the anaerobic digestion of waste activated sludge, Bioresource Technology, 102 (2011): 4124–4130. [CrossRef] [PubMed] [Google Scholar]
  39. T. Hidaka, F. Wang, T. Pascual, Comparative performance of mesophilic and thermophilic anaerobic digestion for high solid sewage sludge, Bioresource Technology, 149 (2013): 177–183. [PubMed] [Google Scholar]
  40. U. Marchaim, C. Krause, Propionic to acetic acid ratios in overloaded anaerobic digestion. Bioresource Technology, 43 (1993): 195–203. [Google Scholar]
  41. I. Angelidaki, B.K. Ahring, Effects of free long-chain fatty acids on thermophilic anaerobic digestion, Applied Microbiology and Biotechnology, 37 (1992): 808–812. [Google Scholar]
  42. A. Fernández, A. Sánchez, X. Font, Anaerobic codigestion of a simulated organic fraction of municipal solid wastes and fats of animal and vegetable origin, Biochemical Engineering Journal, 26, 1 (2005): 2228. [Google Scholar]
  43. J. F. Andrews, Dynamic Model of the Anaerobic Digestion Process, Journal of the Sanitary Engineering Division, 1 (1969): 95–116. [Google Scholar]
  44. P. Mahanta, U.K. Saha, A. Dewan, P. Kalita, B. Buragohain, Biogas digester: A discussion on factors affecting biogas production and field investigation of a novel duplex digester, Journal of the Solar Energy Society of India, 15, 2 (2005): 1–12. [Google Scholar]
  45. S. Park, Y. Li, Evaluation of methane production and macronutrient degradation in the anaerobic codigestion of algae biomass residue and lipid waste, Bioresource Technology, 111 (2012): 42–48. [PubMed] [Google Scholar]
  46. D. Divya, L. R. Gopinath, S. Indran, P. Merlin Christy, Enhancement of biogas production through sustainable feedstock utilization by co-digestion, International Journal of Plant, Animal and Environmental Sciences, 5, 3 (2015b): 88–94. [Google Scholar]
  47. A. Award, C. Xiaoguang, L. Jianshe, X. Xuehui, Z. Jian, Z. Kai, W. Heng, L. Na, Characteristics, process parameters, and inner components of anaerobic bioreactors, Biomed Research International, (2014): 1–10. [Google Scholar]
  48. M.T. Kato, J.A. Field, R. Kleerebezem, G. Lettinga, Treatment of low strength soluble wastewaters in UASB reactors. Journ. Journal of Fermentation and Bioengineering., 77 (1994): 679. [Google Scholar]
  49. I. Zhang, Y.W. Lee, D. Jhang, Anaerobic codigestion of food waste and piggery waste water: focusing on the role of trace elements, Bioresource Technology, 102 (2011): 5048–5059. [CrossRef] [PubMed] [Google Scholar]
  50. A. Schattauer, E. Abdoun, P. Weiland, M. Plochl, M. Heiermann, Abundance of trace elements in demonstration biogas plants, Biosystem Engineering, 108 (2011): 57–65. [Google Scholar]
  51. F. Cheng, K. Boe, A. Irini, Anaerobic co-digestion of desugared molasses with cow manure focusing on sodium and potassium inhibition, Bioresource Technology, 102 (2011): 1005–1011. [PubMed] [Google Scholar]
  52. A. Mudhoo, S. Kumar, Effects of heavy metals as stress factors on anaerobic digestion processes and biogas production from biomass, International Journal of Environmental Science and Technology, 10 (2013): 1383–1398. [Google Scholar]
  53. P. Buffiere, C. Fonade, R. Moletta, Mixing and phase hold-ups variations due to gas production in anaerobic fluidized-bed digesters: influence on reactor performance, Biotechnology and Bioengineering, 60 (1998): 36–43. [PubMed] [Google Scholar]
  54. L. Yu, P.C. Wensel, J. Ma, S. Chen, Mathematical modeling in Anaerobic decomposition, Bioremediation and Biodegradation, S4 (2013): 003. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.