Open Access
Issue
E3S Web Conf.
Volume 302, 2021
2021 Research, Invention, and Innovation Congress (RI2C 2021)
Article Number 02020
Number of page(s) 10
Section Environmental Science and Engineering
DOI https://doi.org/10.1051/e3sconf/202130202020
Published online 10 September 2021
  1. A. Guleria, G. Kumari, E. Limac, Cellulose-g-poly(acrylamide-co-acrylic acid) polymeric bioadsorbent for the removal of toxic inorganic pollutants from wastewaters, Carbohydrate Polymers, 228, (2020): 115396 [PubMed] [Google Scholar]
  2. B. Zhao, H. Jiang, Z. Lin, S. Xu, J. Xie, A. Zhang, Preparation of acrylamide/acrylic acid cellulose hydrogels for the adsorption of heavy metal ions, Carbohydrate Polymers, 224, (2019): 115022 [PubMed] [Google Scholar]
  3. Y. Li, Y. Wen, L. Wang, J. He, S. Al-Dey, M. ElNewehy, J. Yue, B. Ding, Simultaneous visual detection and removal of lead(II) ions with pyromellitic dianhydride-grafted cellulose nanofibrous membranes, Journal of Materials Chemistry A, 3, 35(2015): 18180-18189 [Google Scholar]
  4. E. Pehlivan, T. Altun, The study of various parameters affecting the ion exchange of Cu2+, Zn2+, Ni2+, Cd2+, and Pb2+ from aqueous solution on Dowex 50W synthetic resin, Journal of Hazardous Materials, 134, 1(2006): 149-156 [PubMed] [Google Scholar]
  5. A. Demirbas, E. Pehlivan, F. Gode, T. Altun, G. Arslanc, Adsorption of Cu(II), Zn(II), Ni(II), Pb(II), and Cd(II) from aqueous solution on Amberlite IR120 synthetic resin, Journal of Colloid and Interface Science, 282, 1(2005): 20-25 [CrossRef] [PubMed] [Google Scholar]
  6. S. Edebali, E. Pehlivan, Evaluation of chelate and cation exchange resins to remove copper ions, Powder Technology, 301, (2016): 520-525 [Google Scholar]
  7. C. Dong, H. Zhang, Z. Pang, Y. Liu, F. Zhang, Sulfonated modification of cotton linter and its application as adsorbent for high-efficiency removal of lead(II) in effluent, Bioresource Technology, 146, (2013): 512-518 [PubMed] [Google Scholar]
  8. C. Dong, F. Zhang, Z. Pang, G. Yang, Efficient and selective adsorption of multi-metal ions using sulfonated cellulose as adsorbent, Carbohydrate Polymers, 151, (2016): 230-236 [PubMed] [Google Scholar]
  9. H. Chen, Y. Cheng, Z. Zhu, H. He, L. Zhang, N. Li, Y. Zhu, Adsorption of Pb(II) from Aqueous Solution by Mercerized Moso Bamboo Chemically Modified with Pyromellitic Dianhydride, Journal of Environmental Engineering, 146, (2020): 04019127 [Google Scholar]
  10. P. Prasannam, Removal of heavy metals from solution using ion exchangers based on hydroxyl cellulose, Materials Science and Engineering, 1, (2004): 30-43 [Google Scholar]
  11. V. Kumar, A. Kumar, S.K. Singh, M. Kumar, S. Kumar, D. Kumar, R. Singh, Chelating Drug Therapy, Austin Journal of Genetics and Genomic Research, 2, 1(2015): 1-3 [Google Scholar]
  12. K.H. Hong and G. Sun, Photoactive antibacterial cotton fabrics treated by 3, 3′, 4, 4′benzophenonetetracarboxylic dianhydride, Carbohydrate Polymers, 84, 3(2011): 1027-1032 [Google Scholar]
  13. A. Hou, G. Sun, Multifunctional finishing of cotton fabrics with 3, 3′, 4, 4′-benzophenone tetracarboxylic dianhydride: Reaction mechanism, Carbohydrate Polymers, 95, 2(2013): 768-772 [PubMed] [Google Scholar]
  14. S. Das, A. Bhattachary, S. Haldar, A. Ganguly, S. Gud, Y.P. Tinga, P.K. Chatterjee, Optimization of enzymatic saccharification of water hyacinth biomass for bio-ethanol: Comparison between artificial neural network and response surface methodology, Sustainable Materials and Technologies, 3, (2015): 17-28 [Google Scholar]
  15. A. Ganguly, S. Das, A. Bhattacharya, A. Dey, P. K. Chatterjee, Enzymatic hydrolysis of water hyacinth biomass for the production of ethanol: optimization of driving parameters, Indian journal of experimental biology, 51, (2013): 556-566 [PubMed] [Google Scholar]
  16. T. Pusic, A.M. Grancaric, I. Soljacic, V. Ribitsch, The effect of mercerisation on the electrokinetic potential of cotton, Coloration Technology, 115, 4(1999): 121-124 [Google Scholar]
  17. B. Abderrahim, E. Abderrahman, A. Mohamed, T. Fatima, T. Abdesselam, O. Krim, Kinetic thermal degradation of cellulose, polybutylene succinate and a green composite: Comparative Study, World Journal of Environmental Engineering, 3, 4(2015): 95-110 [Google Scholar]
  18. K. Das, P. Ghosh, A. Dey, A. Ganguly, S. Das, P. K. Chatterjee, Studies on the Optimization of Phenolics during Production of Xylitol from Water Hyacinth, European Journal of Biotechnology and Bioscience, 3, 4(2015): 25-33 [Google Scholar]
  19. N. Atikah, M. Nor, W. Aida, W. Mustapha, O. Hassan, Deep Eutectic Solvent (DES) as a Pretreatment for Oil Palm Empty Fruit Bunch (OPEFB) in Sugar Production, Procedia Chemistry, 18, (2016): 147-154 [Google Scholar]
  20. D. Gaspar, S.N. Fernandes, A.G. de Oliveira, J. G. Fernandes, P. Grey, R.V. Pontes, L. Pereira, R. Martins, M.H. Godinho, E. Fortunato, Nanocrystalline cellulose applied simultaneously as the gate dielectric and the substrate in flexible field effect transistors, Nanotechnology, 25, (2014): 094008 [PubMed] [Google Scholar]
  21. I. Kavianinia, P.G. Plieger, N.G. Kandile, D.R.K. Hardinga, New hydrogels based on symmetrical aromatic anhydrides: Synthesis, characterization and metal ion adsorption evaluation, Carbohydrate Polymers, 87, 1(2012): 881-893 [Google Scholar]
  22. A. Tripathi, G.N. Parsons, O.J. Rojas, S.A. Khan, Featherlight, Mechanically Robust Cellulose Ester Aerogels for Environmental Remediation, ACS Omega, 2, 8(2017): 4297-4305 [PubMed] [Google Scholar]
  23. F. Afinjuomo, T.G. Barclay, Y. Songa, A. Parikh, N. Petrovsky, S. Garg, Synthesis and characterization of a novel inulin hydrogel crosslinked with pyromellitic dianhydride, Reactive and Functional Polymers, 134, (2019): 104-111 [Google Scholar]
  24. G. Luo, P.J. Strong, H. Wang, W. Ni, W. Shi, Kinetics of the pyrolytic and hydrothermal decomposition of water hyacinth, Bioresource Technology, 102, 13(2011): 6990-6994 [PubMed] [Google Scholar]
  25. M.G. Junior, K.M. Novack, V.R. Botaro, Bamboo pulp treated with NaOH and benzophenone tetracarboxylic dianhydride as reinforcement of new polymerics materials, Revista Latinoamericana de Metalurgia y Materiales, 34, 2(2013): 196-208 [Google Scholar]
  26. Y. Zhang, M. Zhang, Y. Zhang, X.W. Chen and J. H. Wang, Green and catalyst-free preparation of triazinyl polyimide for the efficient adsorption of glycoproteins, RSC Advances, 6, 51(2016): 4600246007 [Google Scholar]
  27. T.T. Hong, H. Okabe, Y. Hidaka, B.A. Omondi, K. Hara, Radiation induced modified CMC-based hydrogel with enhanced reusability for heavy metal ions adsorption, Polymer, 181, (2019): 121772 [Google Scholar]
  28. M. Maslova, V. Ivanenko, N. Yanicheva, L. Gerasimova, The effect of heavy metal ions hydration on their sorption by a mesoporous titanium phosphate ion-exchanger, Journal of Water Process Engineering, 35, (2020): 101233 [Google Scholar]
  29. S. Huang, C. Min, Y. Liao, H. Sun, Y. Jiang, Poly(1amino-5-chloroanthraquinone): Highly selective and ultrasensitive fluorescent chemosensor for ferric ion, Journal of Fluorescence, 23, (2013) :621-627 [PubMed] [Google Scholar]
  30. E. R. Nightingale, Phenomenological Theory of Ion Solvation : Effective Radii of Hydrated Ions, The Journal of Physical Chemistry, 63, 9(1959): 13811387 [Google Scholar]
  31. Sigma Aldrich Co., Ltd, Cation exchange resin, June 25, (2021), Available from https://www.sigmaaldrich.com/TH/en/search/cation-exchange-resin [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.