Open Access
Issue
E3S Web Conf.
Volume 308, 2021
2021 6th International Conference on Materials Science, Energy Technology and Environmental Engineering (MSETEE 2021)
Article Number 01007
Number of page(s) 12
Section Energy Resource Development and Energy Saving Technology
DOI https://doi.org/10.1051/e3sconf/202130801007
Published online 27 September 2021
  1. Li X.. Zhang M.. Prof. Yuan S.. Prof. Lu C. Research Progress of Silicon/Carbon Anode Materials for Lithium-Ion Batteries: Structure Design and Synthesis Method Chem Electro Chem 2020, 7, 4289. [Google Scholar]
  2. He S.. Huang S.. Wang S.. Mizota I.. Liu X.. Hou X. Considering Critical Factors of Silicon/Graphite Anode Materials for Practical High-Energy Lithium-Ion Battery Applications Energy Fuels 2021, 35, 2, 944–964. [Google Scholar]
  3. Wu F. Maier J. Yu Y. Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries Chem. Soc. Rev. 2020, 49, 1569-1614. [Google Scholar]
  4. Goodenough J. B., Park K. S. The Li-Ion Rechargeable Battery: A Perspective J. Am. Chem. Soc. 2013, 135, 4, 1167-1176. [Google Scholar]
  5. Choi J.. Aurbach, D. Promise and reality of post-lithium-ion batteries with high energy densities. Nat Rev Mater 2016, 1, 16013. [Google Scholar]
  6. Rossen E.. Jones C.D.W., Dahn J.R. Structure and electrochemistry of LixMnyNi1-yO2 Solid State Ionics 1992, 57, 3-4, 311-318. [Google Scholar]
  7. Rossouw M.H., Liles D.C., Thackeray M.M. Synthesis and Structural Characterization of a Novel Layered Lithium Manganese Oxide, Li0.36Mn0.9102, and Its Lithiated Derivative, Li1.09Mn-0.9102 Solid State Chem. 1993, 104, 2, 464-466. [Google Scholar]
  8. Wu F.. Yushin G. Conversion cathodes for rechargeable lithium and lithium-ion batteries Energy Environ. Sci. 2017, 10, 435-459. [Google Scholar]
  9. Wu F.. Borodin O.. Yushin G. In situ surface protection for enhancing stability and performance of conversion-type cathodes MRS Energy & Sustainability 2017, 4, E9. [Google Scholar]
  10. Haro M.. Kumar, P., Zhao, J. et al. Nano-vault architecture mitigates stress in silicon-based anodes for lithium-ion batteries Commun Mater 2021, 2, 16. [Google Scholar]
  11. Yamada Y.. Usui K.. Chiang C.H., Kikuchi K.. Furukawa K.. Yamada A. General Observation of Lithium Intercalation into Graphite in Ethylene-Carbonate-Free Super concentrated Electrolytes ACS Appl. Mater. Interfaces 2014, 6, 14, 10892–10899. [Google Scholar]
  12. Teshima K.. Inagaki H.. Tanaka S.. Yubuta K.. Hozumi M.. Kohama K.. Shishido T.. Oishi S. Growth of Well-Developed Li4Ti5O12 Crystals by the Cooling of a Sodium Chloride Flux. Cryst. Growth Des. 2011, 11, 10, 4401–4405. [Google Scholar]
  13. Chan M. K. Y., Wolverton C.. Greeley J. P. First Principles Simulations of the Electrochemical Lithiation and Delithiation of Faceted Crystalline Silicon J. Am. Chem. Soc. 2012, 134, 35, 14362–14374. [CrossRef] [PubMed] [Google Scholar]
  14. Nitta N.. Yushin G. High-Capacity Anode Materials for Lithium-Ion Batteries: Choice of Elements and Structures for Active Particles Part. Part. Syst. Charact. 2014, 31, 3, 317-336 [Google Scholar]
  15. Lu J.. Chen Z.. Ma Z.. Pan F.. Larry A. Curtiss and Khalil Amine, ‘The role of nanotechnology in the development of battery materials for electric vehicles’, Nature Nanotechnology. 2016, 11, 1031–1038 [CrossRef] [PubMed] [Google Scholar]
  16. Huggins, R. A. & Nix, W. D. Decrepitation model for capacity loss during cycling of alloys in rechargeable electrochemical systems. Ionics 2000, 6, 57–63. [Google Scholar]
  17. K.E. Aifantis, S. Brutti, S.A. Hackney, T. Sarakonsri, B. Scrosati, SnO2/C nanocomposites as anodes in secondary Li-ion batteries. Electrochimica Acta, 2010, 5071-5076, ISSN 0013-4686. [Google Scholar]
  18. Cho J. J., Porous Si anode materials for lithium rechargeable batteries. Journal of Materials Chemistry, 2010, 20, 4009−4014. [Google Scholar]
  19. Tritsaris G. A., Kaxiras E.. Meng S.. Wang E. Adsorption and Diffusion of Lithium on Layered Silicon for Li-Ion Storage Nano Lett. 2013, 13, 5, 2258-2263. [Google Scholar]
  20. Liu J.. Yang Y.. Lyu P.. Nachtigall P.. Xu Y. Few-Layer Silicene Nanosheets with Superior Lithium-Storage Properties Adv. Mater. 2018, 30, 26, 1800838. [Google Scholar]
  21. Kim W. S., Hwa Y.. Shin J. H., Yang M.. Sohn H. J., Hong S. H. Scalable synthesis of silicon nanosheets from sand as an anode for Li-ion batteries Nanoscale. 2014, 6, 4297-4302. [Google Scholar]
  22. Tang J.. Yin Q.. Wang Q.. Wang H.. Xu Z.. Yao H.. Yang J.. Zhou X.. Kim J. K., Zhou L. Two-dimensional porous silicon nanosheets as anode materials for high performance lithium-ion batteries Nanoscale 2019, 11, 10984. [Google Scholar]
  23. Wang X.. Sun L.. Hu X.. Suantyoko R. A., Zhang Q. Ni–Si nanosheet network as high performance anode for Li ion batteries Journal of Power Sources 2015, 280, 15, 393-396. [Google Scholar]
  24. Chen S.. Chen Z.. Xu X.. Cao C.. Xia M.. Luo Y. Scalable 2D Mesoporous Silicon Nanosheets for High-performance Lithium-Ion Battery Anode Small 2018, 14, 1703361. [Google Scholar]
  25. Zhou G.. Lin X.. Hu G.. Mai L.. Cui Y. Nanowires for Electrochemical Energy Storage. Chem. Rev. 2019, Chem. Rev. 2019, 119, 20, 11042–11109. [CrossRef] [PubMed] [Google Scholar]
  26. Chan C. K., Peng H. L., Liu G.. McIlwrath K.. Zhang X. F., Huggins R. A., Cui Y. High-Performance Lithium Battery Anodes Using Silicon Nanowires. Nat. Nanotechnol. 2008, 3, 31−35 [CrossRef] [PubMed] [Google Scholar]
  27. Nguyen H.. Yao F.. Zamfir M.. et al. Highly interconnected Si nanowires for improved stability Li-ion battery anodes. J. Advance Energy Material, 2011, 1(6): 1154-1161 [Google Scholar]
  28. Hu L.. Wu H.. Hong S. S., Cui L.. McDonough J. R., Bohy S.. Cui Y. Si Nanoparticle-Decorated Si Nanowire Networks for Li-Ion Battery Anodes. Chem. Commun. 2011, 47, 358−369. [Google Scholar]
  29. Leveau L. Laïk B. Pereira-Ramos J.-P., A. Gohier, P. Tran-Van, C.- S. Cojocaru, J. Power Sources 2016, 316, 1. [Google Scholar]
  30. Ohara S.. Suzuki J.. Sekine K. and Takamura T.. J. Power Sources, 2004, 136, 301–309. [Google Scholar]
  31. Ng S. H., Wang J.. Wexler D.. Konstantinov K.. Guo Z. P., Liu H. K. Highly Reversible Lithium Storage in Spheroidal Carbon-Coated Silicon Nanocomposites as Anodes for Lithium-Ion Batteries Angewandte Chemie International Edition 2006, 45, 41, 6896-6899. [Google Scholar]
  32. Ma H.. Cheng F.. Chen J. Y., Zhao J. Z., Li C. S., Tao Z. L., Liang J. Nest-like Silicon Nanospheres for High-Capacity Lithium Storage Adv. Mater. 2007, 19, 22, 4067-4070. [Google Scholar]
  33. Ge M.. Rong J.. Fang X.. Zhang A.. Lu Y.. Zhou C. Scalable preparation of porous silicon nanoparticles and their application for lithium-ion battery anodes Nano Res. 2013, 6, 174-181. [Google Scholar]
  34. Wang, B. et al. Contact-engineered and void-involved silicon/carbon nanohybrids as lithium-ion-battery anodes. Adv. Mater. 2013, 25, 3560–3565. [CrossRef] [PubMed] [Google Scholar]
  35. Dong H.. Feng R.X., X.P. Ai, Cao Y.L., Yang H.X. Structural and electrochemical characterization of Fe–Si/C composite anodes for Li-ion batteries synthesized by mechanical alloying, Electrochimica Acta, 2004, 49, pp. 5217-5222. [Google Scholar]
  36. Zhang Y.. Zhao Z. Zhang X.G. Zhang H.L. Li F.. Liu C.. Cheng H.M., carbon-coated silicon/Carbon Nanotube composites: promising application for Li-ion batteries. International Journal of Nanomanufacturing (IJNM), 2008, Vol. 2, No. 1/2,. [Google Scholar]
  37. Maria L. T., Silvia O.. Emanuela T.. Valeria G.. Marco R. Si/C hybrid nanostructures for Li-ion anodes: An overview, Journal of Power Sources, 2014, Volume 246, 167-177, ISSN 0378-7753,. [Google Scholar]
  38. Liu N. et al. A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes. National Nanotechnology. 2014, 9, 187–192 [Google Scholar]
  39. Dimov N.. Kugino S.. Yoshio M. Carbon-coated silicon as anode material for lithium ion batteries: advantages and limitations Electrochimica Acta 2003, 48, 11, 1579-1587. [Google Scholar]
  40. Sethuraman V. A., Kowolik K.. Srinivasan V. Increased cycling efficiency and rate capability of copper-coated silicon anodes in lithium-ion batteries Journal of Power Sources 2011, 196, 1, 393-398. [Google Scholar]
  41. Yoshio M.. Wang H.. Fukuda K.. Umeno T.. Dimov N.. Ogumi Z. Carbon-Coated Si as a Lithium-Ion Battery Anode Material J. Electrochem. Soc. 2002, 149, A1598. [Google Scholar]
  42. Fang G.. Deng X.. Zou J.. Zeng X. Amorphous/ordered dual carbon coated silicon nanoparticles as anode to enhance cycle performance in lithium ion batteries Electrochimica Acta 2019, 295, 498-506. [Google Scholar]
  43. He Y.. Piper D. M., Gu M.. Travis J. J., George S. M., Lee S. H., Genc A.. Pullan L.. Liu J.. Mao S. X., Zhang J. G., Ban C.. Wang C. In Situ Transmission Electron Microscopy Probing of Native Oxide and Artificial Layers on Silicon Nanoparticles for Lithium Ion Batteries ACS Nano 2014, 8, 11, 11816-11823. [Google Scholar]
  44. Tang D.. Yi R.. Gordin M. L., Melnyk M.. Dai F.. Chen S.. Song J.. Wang D. Titanium nitride coating to enhance the performance of silicon nanoparticles as a lithium-ion battery anode J. Mater. Chem. A. 2014, 2, 10375-10378. [Google Scholar]
  45. Lin J.. Peng H.. Kim J. H., Wygant B. R., Meyerson M. L., Rodriguez R.. Liu Y.. Kawashima K.. Gu D.. Peng D. L., Guo H.. Heller A.. Mullins C. B. Lithium Fluoride Coated Silicon Nanocolumns as Anodes for Lithium Ion Batteries ACS Appl. Mater. Interfaces 2020, 12, 16, 18465-18472. [Google Scholar]
  46. Wu C. Y., Chang C. C., Duh J. G. Silicon nitride coated silicon thin film on three dimensions current collector for lithium-ion battery anode Journal of Power Sources 2016, 325, 64-70. [Google Scholar]
  47. Wang H.. Zhou Y.. Tao Z. Research progress of silicon-based anodes for lithium-ion batteries. J. Chinese Journal of Power Source, 2009, 33(11): 1029-1032. (in Chinese) [Google Scholar]
  48. Chen J.. Zhao H.. He J.. et al. Si-based composite anode materials for lithium ion batteries. J. Progress in Chemistry, 2009, 21(10): 2115-2122. (in Chinese) [Google Scholar]
  49. Sun L.. Wang X.. Susantyoko R. A., et al. Copper– silicon core–shell nanotube arrays for free-standing lithium ion battery anodes. J. Journal of Materials Chemistry A, 2014, 2(37): 15294-15297 [Google Scholar]
  50. Wang Y.. Huang Y.. Huang H.. et al. Advances in nanostructure design and composite of silicon-based materials and their application in the lithium-ion batteries anode materials. J. China Academic Journal Electronic Publishing House, 2015, 10(6): 728-733 (in Chinese) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.