Open Access
E3S Web Conf.
Volume 308, 2021
2021 6th International Conference on Materials Science, Energy Technology and Environmental Engineering (MSETEE 2021)
Article Number 01015
Number of page(s) 11
Section Energy Resource Development and Energy Saving Technology
Published online 27 September 2021
  1. Wang, X. (2020) Controllable preparation of silicon nanotubes and experimental study of Si/C composite. me=CMFD202101&filename=1020300687.nh [Google Scholar]
  2. Lu, J.T. (2018) Preparation and electrochemical properties of silicon nanotubes for lithium-ion battery. e=CMFD202001&filename=1018846975.nh [Google Scholar]
  3. Song, YH., Yang, YX., Hu, Z.C. (2011) Present status and development trend of batteries for electric vehicles. Power System Technology, 35(04): 1–7. [Google Scholar]
  4. Yan, J.D. (2014) Current status and development analysis of lithium-ion batteries. Acta Aeronautica et Astronautica Sinica, 35(10): 2767–2775. [Google Scholar]
  5. Hu, R.H. (2014) Numerical simulation on the thermal property and thermal management of the lithium-ion battery for electric vehicle. e=CMFD201501&filename=1014063525.nh [Google Scholar]
  6. Han, X., Zhang, CK., Wu, HL., Xie, QS., Wang L.S., Peng, D.L. (2021) Working mechanism and key materials of lithium-ion batteries J]. Metallic Functional Materials,2021,28(02):37–58. [Google Scholar]
  7. Li, T.X. et al.(2021) “ Preparation and Electrochemical Performance of Macroporous Nirich LiNi0.8Co0.1Mn0.1O2 Cathode Material” Acta Chimica Sinica .():. doi:10.6023/A21010019. [Google Scholar]
  8. Cailiaoniu. (2017). Introduction on NCM cathode materials of lithium-ion batteries. [Google Scholar]
  9. Hu, JT., Zhang, J.G (2019) .Enhancing the Surface Stability of Ni-Rich Layered Transition Metal Oxide Cathode Materials[J]. Chinese Journal of Structural Chemistry, 2019, 38(12):2005–2008. [Google Scholar]
  10. Zhang H.L., Zhang, J.J. (2021) An overview of modification strategies to improve LiNi0·8Co0·1Mn0·1O2 (NCM811) cathode performance for automotive lithium-ion batteries[J]. eTransportation, 2021, 7. [Google Scholar]
  11. Heck, C.A et al. (2020) Review—Knowledge-Based Process Design for High Quality Production of NCM811 Cathodes[J]. Journal of The Electrochemical Society, 2020, 167(16). [Google Scholar]
  12. Ao, L., Wu, C., Xu, Y., Wang, X., Jiang, K., Shang, L., Li, Y., Zhang, J., Hu, Z., Chu, J. (2020). A novel Sn particles coated composite of SnOx/ZnO and N-doped carbon nanofibers as high-capacity and cycle-stable anode for lithium-ion batteries. Journal of Alloys and Compounds, 819. [Google Scholar]
  13. Bourderau, S., Brousse, T., Schleich, D.M. (1999) Amorphous silicon as a possible anode material for Li-ion batteries. Journal of Power Sources, 81: 233–236 [Google Scholar]
  14. Chan, CK., McDowell, MT., Cui, Y. (2013) Silicon Nanowire Electrodes for Lithium-Ion Battery Negative Electrodes. In: Rachid, Y. (Eds.), Nanomaterials for Lithium-Ion Batteries: Fundamentals and Applications. Jenny Stanford Publishing, Singapore. [Google Scholar]
  15. Xie, Y., He, C., Zhang, J., Hou, Y., Meng, W., Zhao, D. (2021) Nitrogen-doped carbon caging silicon nanoparticles for high performance lithium-ion battery anodes. Journal of Alloys and Compounds, vol. 860. [Google Scholar]
  16. Liang, B., Zhu, S., Wang, J., Liang, X., Huang, H., Huang, D., Zhou, W., Xu, S., Guo, J. (2021). Silicon-doped FeOOH nanorods@graphene sheets as high-capacity and durable anodes for lithium-ion batteries. Applied Surface Science, vol. 550. [Google Scholar]
  17. Amprius Technology, 2020. [] [Google Scholar]
  18. Stefan, I., 2020. High Energy Density Lithium-Ion Cells with Silicon Nanowire Anode Technology. In: 2020 NASA Battery Industry Day. Virtual meeting. [Google Scholar]
  19. Yang, Y., Yan, C., Huang, J.Q. (2021) Research Progress of Solid Electrolyte Interphase in Lithium Batteries. Acta Phys. -Chim. Sin, 37: 1–13. [Google Scholar]
  20. Aurbach, D., Zinigrad, E., Yaron, C., Teller, H. (2002) A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions. Solid State Ionics, 148(2002): 405–416. [CrossRef] [Google Scholar]
  21. Chen, S., Wang, Z., Zhao, H. (2009) A Novel Flame Retardant and Film-forming Electrolyte Additive for Lithium-ion Batteries. Journal of Power Sources, 187(1): 229–232. [Google Scholar]
  22. Liao, L., Cheng, X., Ma, Y. (2013) Fluoroethylene carbonate as electrolyte additive to improve low temperature performance of LiFePO4 electrode. Electrochemical Acta, 87(1): 466–472. [Google Scholar]
  23. Erika, P., Vietor, CV., Marco, T.S. (2021) Adopting a Conversion Design Approach to Maximize the Energy Density of Battery Packs in Electric Vehicles[J]. Energies, 2021, 14(7). [Google Scholar]
  24. Technical specifications. BMW i3 94 Ah (2016) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.