Open Access
E3S Web Conf.
Volume 308, 2021
2021 6th International Conference on Materials Science, Energy Technology and Environmental Engineering (MSETEE 2021)
Article Number 01014
Number of page(s) 9
Section Energy Resource Development and Energy Saving Technology
Published online 27 September 2021
  1. M.M. Mekonnen, A.Y. Hoekstra, Four billion people facing severe water scarcity, Science Advances 2(2) (2016) e1500323. [Google Scholar]
  2. Y. Sun, Z. Li, R. Pan, J. Zhou, W. Gao, Measurement of long yarn hair based on hairiness segmentation and hairiness tracking, The Journal of The Textile Institute 108(7) (2017) 1271–1279. [Google Scholar]
  3. J.C. Minx, W.F. Lamb, M.W. Callaghan, L. Bornmann, S. Fuss, Fast growing research on negative emissions, Environmental Research Letters 12(3) (2017) 035007. [Google Scholar]
  4. W.J. Oswald, C.G. Golueke, Biological transformation of solar energy, Advances in applied microbiology, Elsevier 1960, pp. 223–262. [Google Scholar]
  5. K. Li, Q. Liu, F. Fang, R. Luo, Q. Lu, W. Zhou, S. Huo, P. Cheng, J. Liu, M. Addy, P. Chen, D. Chen, R. Ruan, Microalgae-based wastewater treatment for nutrients recovery: A review, Bioresource Technology 291 (2019) 121934. [Google Scholar]
  6. L. Flórez-Miranda, R.O. Cañizares-Villanueva, O. Melchy-Antonio, F. Martínez-Jerónimo, C.M. Flores-Ortíz, Two stage heterotrophy/photoinduction culture of Scenedesmus incrassatulus: potential for lutein production, Journal of biotechnology 262 (2017) 67–74. [CrossRef] [PubMed] [Google Scholar]
  7. S.K. Bhatia, S. Mehariya, R.K. Bhatia, M. Kumar, A. Pugazhendhi, M.K. Awasthi, A.E. Atabani, G. Kumar, W. Kim, S.-O. Seo, Y.-H. Yang, Wastewater based microalgal biorefinery for bioenergy production: Progress and challenges, Science of The Total Environment 751 (2021) 141599. [Google Scholar]
  8. C.E.Q. Arita, C. Peebles, T.H. Bradley, Scalability of combining microalgae-based biofuels with wastewater facilities: a review, Algal research 9 (2015) 160–169. [Google Scholar]
  9. L. Barsanti, P. Gualtieri, Algae: anatomy, biochemistry, and biotechnology, CRC press 2014. [Google Scholar]
  10. S.A. Razzak, M.M. Hossain, R.A. Lucky, A.S. Bassi, H. de Lasa, Integrated CO2 capture, wastewater treatment and biofuel production by microalgae culturing—a review, Renewable and sustainable energy reviews 27 (2013) 622–653. [Google Scholar]
  11. W. Zhou, B. Hu, Y. Li, M. Min, M. Mohr, Z. Du, P. Chen, R. Ruan, Mass cultivation of microalgae on animal wastewater: a sequential two-stage cultivation process for energy crop and omega-3-rich animal feed production, Applied biochemistry and biotechnology 168(2) (2012) 348–363. [Google Scholar]
  12. A. Otondo, B. Kokabian, S. Stuart-Dahl, V.G. Gude, Energetic evaluation of wastewater treatment using microalgae, Chlorella vulgaris, Journal of Environmental Chemical Engineering 6(2) (2018) 3213–3222. [Google Scholar]
  13. Q.-x. Kong, L. Li, B. Martinez, P. Chen, R. Ruan, Culture of microalgae Chlamydomonas reinhardtii in wastewater for biomass feedstock production, Applied biochemistry and Biotechnology 160(1) (2010) 9–18. [Google Scholar]
  14. L. Zhu, Z. Wang, Q. Shu, J. Takala, E. Hiltunen, P. Feng, Z. Yuan, Nutrient removal and biodiesel production by integration of freshwater algae cultivation with piggery wastewater treatment, Water research 47(13) (2013) 4294–4302. [Google Scholar]
  15. M. Khan, N. Yoshida, Effect of L-glutamic acid on the growth and ammonium removal from ammonium solution and natural wastewater by Chlorella vulgaris NTM06, Bioresource technology 99(3) (2008) 575–582. [Google Scholar]
  16. A. Lavoie, J. De la Noüe, Hyperconcentrated cultures of Scenedesmus obliquus: a new approach for wastewater biological tertiary treatment?, Water research 19(11) (1985) 1437–1442. [Google Scholar]
  17. R.J. Craggs, P.J. McAuley, V.J. Smith, Wastewater nutrient removal by marine microalgae grown on a corrugated raceway, Water Research 31(7) (1997) 1701–1707. [Google Scholar]
  18. R.J. Craggs, V.J. Smith, P.J. McAuley, Wastewater nutrient removal by marine microalgae cultured under ambient conditions in mini-ponds, Water Science and Technology 31(12) (1995) 151–160. [Google Scholar]
  19. Y. Su, A. Mennerich, B. Urban, Municipal wastewater treatment and biomass accumulation with a wastewater-born and settleable algal-bacterial culture, Water research 45(11) (2011) 3351–3358. [Google Scholar]
  20. S. Hongyang, Z. Yalei, Z. Chunmin, Z. Xuefei, L. Jinpeng, Cultivation of Chlorella pyrenoidosa in soybean processing wastewater, Bioresource Technology 102(21) (2011) 9884–9890. [Google Scholar]
  21. L.E. González, R.O. Cañizares, S. Baena, Efficiency of ammonia and phosphorus removal from a Colombian agroindustrial wastewater by the microalgae Chlorella vulgaris and Scenedesmus dimorphus, Bioresource technology 60(3) (1997) 259–262. [Google Scholar]
  22. S. Phang, M. Miah, B. Yeoh, M. Hashim, Spirulina cultivation in digested sago starch factory wastewater, Journal of Applied Phycology 12(3) (2000) 395–400. [Google Scholar]
  23. A. Richmond, Q. Hu, Handbook of microalgal culture, Wiley Online Library2013. [Google Scholar]
  24. J. Park, R. Craggs, A. Shilton, Wastewater treatment high rate algal ponds for biofuel production, Bioresource technology 102(1) (2011) 35–42. [Google Scholar]
  25. Y. Zhao, J. Wang, H. Zhang, C. Yan, Y. Zhang, Effects of various LED light wavelengths and intensities on microalgae-based simultaneous biogas upgrading and digestate nutrient reduction process, Bioresource technology 136 (2013) 461–468. [CrossRef] [PubMed] [Google Scholar]
  26. C. Ma, H. Wen, D. Xing, X. Pei, J. Zhu, N. Ren, B. Liu, Molasses wastewater treatment and lipid production at low temperature conditions by a microalgal mutant Scenedesmus sp. Z-4, Biotechnology for biofuels 10(1) (2017) 1–13. [Google Scholar]
  27. H. Zheng, M. Liu, Q. Lu, X. Wu, Y. Ma, Y. Cheng, M. Addy, Y. Liu, R. Ruan, Balancing carbon/nitrogen ratio to improve nutrients removal and algal biomass production in piggery and brewery wastewaters, Bioresource technology 249 (2018) 479–486. [Google Scholar]
  28. Q. Lu, W. Zhou, M. Min, X. Ma, C. Chandra, Y.T. Doan, Y. Ma, H. Zheng, S. Cheng, R. Griffith, Growing Chlorella sp. on meat processing wastewater for nutrient removal and biomass production, Bioresource technology 198 (2015) 189–197. [Google Scholar]
  29. J. Park, R. Craggs, Wastewater treatment and algal production in high rate algal ponds with carbon dioxide addition, Water Science and Technology (2010) 633–639. [Google Scholar]
  30. S. Anuwar, M.-L. Teoh, W.-H. Yap, F.-L. NG, S.-M. PHANG, Effects of elevated temperatures on growth and photosynthetic performance of polar Chlorella, Adv Polar Sci 31(2) (2020) 124–131. [Google Scholar]
  31. Z. Zhang, P. Gao, L. Guo, Y. Wang, Z. She, M. Gao, Y. Zhao, C. Jin, G. Wang, Elucidating temperature on mixotrophic cultivation of a Chlorella vulgaris strain: Different carbon source application and enzyme activity revelation, Bioresource Technology 314 (2020) 123721. [Google Scholar]
  32. J.S. Arcila, G. Buitrón, Microalgae–bacteria aggregates: effect of the hydraulic retention time on the municipal wastewater treatment, biomass settleability and methane potential, Journal of Chemical Technology & Biotechnology 91(11) (2016) 2862–2870. [Google Scholar]
  33. S. Dahmani, D. Zerrouki, L. Ramanna, I. Rawat, F. Bux, Cultivation of Chlorella pyrenoidosa in outdoor open raceway pond using domestic wastewater as medium in arid desert region, Bioresource technology 219 (2016) 749–752. [Google Scholar]
  34. H.N.P. Vo, H.H. Ngo, W. Guo, T.M.H. Nguyen, Y. Liu, Y. Liu, D.D. Nguyen, S.W. Chang, A critical review on designs and applications of microalgae-based photobioreactors for pollutants treatment, Science of the Total Environment 651 (2019) 1549–1568. [Google Scholar]
  35. J. Shi, B. Podola, M. Melkonian, Application of a prototype-scale Twin-Layer photobioreactor for effective N and P removal from different process stages of municipal wastewater by immobilized microalgae, Bioresource technology 154 (2014) 260–266. [Google Scholar]
  36. Y. Luo, P. Le-Clech, R.K. Henderson, Assessment of membrane photobioreactor (MPBR) performance parameters and operating conditions, Water research 138 (2018) 169–180. [Google Scholar]
  37. P. Praveen, J.Y.P. Heng, K.-C. Loh, Tertiary wastewater treatment in membrane photobioreactor using microalgae: Comparison of forward osmosis & microfiltration, Bioresource technology 222 (2016) 448–457. [Google Scholar]
  38. R. Serna-García, P. Ruiz-Barriga, G. Noriega-Hevia, J. Serralta, M. Pachés, A. Bouzas, Maximising resource recovery from wastewater grown microalgae and primary sludge in an anaerobic membrane co-digestion pilot plant coupled to a composting process, Journal of Environmental Management 281 (2021) 111890. [CrossRef] [PubMed] [Google Scholar]
  39. L. Xiao, E.B. Young, J.A. Berges, Z. He, Integrated photo-bioelectrochemical system for contaminants removal and bioenergy production, Environmental science & technology 46(20) (2012) 11459–11466. [Google Scholar]
  40. J. Sun, N. Li, P. Yang, Y. Zhang, Y. Yuan, X. Lu, H. Zhang, Simultaneous antibiotic degradation, nitrogen removal and power generation in a microalgae-bacteria powered biofuel cell designed for aquaculture wastewater treatment and energy recovery, International Journal of Hydrogen Energy 45(18) (2020) 10871–10881. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.