Open Access
E3S Web Conf.
Volume 308, 2021
2021 6th International Conference on Materials Science, Energy Technology and Environmental Engineering (MSETEE 2021)
Article Number 01019
Number of page(s) 8
Section Energy Resource Development and Energy Saving Technology
Published online 27 September 2021
  1. Hartmann P, Bender C L, Vracar M, et al. A rechargeable room-temperature sodium superoxide (NaO2) battery[J]. Nature Materials, 2013, 12(3): 228–232. [CrossRef] [PubMed] [Google Scholar]
  2. Proietti E, Jaouen F, Lefevre M, et al. Iron-based cathode catalyst with enhanced power density in polymer electrolyte membrane fuel cells[J]. Nature Communications, 2011, 2: 416. [CrossRef] [PubMed] [Google Scholar]
  3. Wroblowa H S, Pan Y C, Razumney G. Electroreduction of oxygen -new mechanistic criterion[J]. Journal of Electro- analytical Chemistry, 1976, 69: 195–201. [Google Scholar]
  4. J K Norskov, J Rossmeisl, A Logadottir, et al. Origin of the overpotential for oxygen reduction at a fuel-cell cathode [J]. Journal of Physical Chemistry B, 2004, 108(46): 17886-17892. [Google Scholar]
  5. Z. Zhang, C. Feng, C. Liu, M. Zuo, L. Qin, X. Yan, Y. Xing, H. Li, R. Si, S. Zhou and J. Zeng, Nat. Commun., 2020, 11, 1215. [CrossRef] [PubMed] [Google Scholar]
  6. Xu, H., et al., Atomically dispersed M-N-C catalysts for the oxygen reduction reaction. Journal of materials chemistry. A, Materials for energy and sustainability, 2020. 8(44): p. 23187–2321. [Google Scholar]
  7. Z. Zhang, Y. Chen, L. Zhou, C. Chen, Z. Han, B. Zhang, Q. Wu, L. Yang, L. Du, Y. Bu, P. Wang, X. Wang, H. Yang and Z. Hu, Nat. Commun., 2019, 10, 1657 [CrossRef] [PubMed] [Google Scholar]
  8. F. Xiao, G.-L. Xu, C.-J. Sun, M. Xu, W. Wen, Q. Wang, M. Gu, S. Zhu, Y. Li, Z. Wei, X. Pan, J. Wang, K. Amine and M. Shao, Nano Energy, 2019, 61, 60–64. [Google Scholar]
  9. H. Zhang, H. T. Chung, D. A. Cullen, S. Wagner, U. I. Kramm, K. L. More, P. Zelenay and G. Wu, Energy Environ. Sci., 2019, 12, 2554–2558. [Google Scholar]
  10. M. Chen, Y. He, J. S. Spendelow and G. Wu, ACS Energy Lett., 2019, 4, 1619–1633. [Google Scholar]
  11. Y. Chen, S. Ji, Y. Wang, J. Dong, W. Chen, Z. Li, R. Shen, L. Zheng, Z. Zhuang, D. Wang and Y. Li, Angew. Chem., Int. Ed., 2017, 56, 6937–6941 [Google Scholar]
  12. J. Li, H. Zhang, W. Samarakoon, W. Shan, D. A. Cullen, S. Karakalos, M. Chen, D. Gu, K. L. More, G. Wang, Z. Feng, Z. Wang and G. Wu, Angew. Chem., Int. Ed., 2019, 58, 18971–18980. [Google Scholar]
  13. Kongkanand, A.; Mathias, M.F. The Priority and Challenge of High-Power Performance of Low-Platinum Proton-Exchange Membrane Fuel Cells. J. Phys. Chem. Lett. 2016, 7, 1127–1137. [CrossRef] [PubMed] [Google Scholar]
  14. Shao, M.; Chang, Q.; Dodelet, J.-P.; Chenitz, R. Recent Advances in Electrocatalysts for Oxygen Reduction Reaction. Chem. Rev. 2016, 116, 3594– 3657 [Google Scholar]
  15. Osmieri, L.; Escudero-Cid, R.; Armandi, M.; Monteverde Videla, A.H.A.; Fierro, J.L.G.; Ocón, P.; Specchia, S. Fe-N/C catalysts for oxygen reduction reaction supported on different carbonaceous materials. Performance in acidic and alkaline direct alcohol fuel cells. Appl. Catal. B Environ. 2017, 205, 637–653 [Google Scholar]
  16. Thompson, S.T.; Wilson, A.R.; Zelenay, P.; Myers, D.J.; More, K.L.; Neyerlin, K.C.; Papageorgopoulos, D. ElectroCat: DOE’s approach to PGM-free catalyst and electrode R&D. Solid State Ionics 2018, 319, 68–76. [Google Scholar]
  17. Osmieri, L.; Escudero-Cid, R.; Armandi, M.; Ocón, P.; Monteverde Videla, A.H.A.; Specchia, S. Effects of using two transition metals in the synthesis of non-noble electrocatalysts for oxygen reduction reaction in direct methanol fuel cell. Electrochim. Acta 2018, 266, 220–232. [Google Scholar]
  18. Osmieri, L., Transition Metal–Nitrogen–Carbon (M-N-C) Catalysts for Oxygen Reduction Reaction. Insights on Synthesis and Performance in Polymer Electrolyte Fuel Cells. ChemEngineering, 2019. 3(1): p. 16. [Google Scholar]
  19. Mun, Y.; Kim, M.J.; Park, S.A.; Lee, E.; Ye, Y.; Lee, S.; Kim, Y.T.; Kim, S.; Kim, O.H.; Cho, Y.H.; et al. Soft-template synthesis of mesoporous non-precious metal catalyst with Fe-Nx/C active sites for oxygen reduction reaction in fuel cells. Appl. Catal. B Environ. 2018, 222, 191–199. [Google Scholar]
  20. Zhang, H.; Hwang, S.; Wang, M.; Feng, Z.; Karakalos, S.; Luo, L.; Qiao, Z.; Xie, X.; Wang, C.; Su, D.; et al. Single Atomic Iron Catalysts for Oxygen Reduction in Acidic Media: Particle Size Control and Thermal Activation. J. Am. Chem. Soc. 2017, 139, 14143–14149. [Google Scholar]
  21. Yang zhengkun. Design preparation and properties of Fe-N/C oxygen reduction electric catalyst [D]. Anhui University of Science and Technology of China, 2017. in Chinese [Google Scholar]
  22. Li shenshen, Su miaojun, Liu weihua. Preparation and oxygen reduction catalytic properties of spherical porous Fe-N -C composite catalysts [J]. Chemical research, 2018, 29(4):396–400. DOI:10.14002/j.hxya.2018.04.010. in Chinese [Google Scholar]
  23. Zhang Ying, Ma Fei, Liu Lu. Study on the effect of heat treatment temperature on the performance and dynamics of Fe-N -C -t catalytic ORR [J]. Chemical progress, 2014(5):1195–1200. DOI:10.3969/j.issn.1000-6613.2014.05.019. [Google Scholar]
  24. Lai Yuan. Research on alkaline fuel cell oxygen electrodes and Co -N/C catalytic materials [D]. Hunan: Central South University, 2008. DOI:10.7666/d.y1326632. [Google Scholar]
  25. Xia yimeng, Wu Shuai, Tan Feng. The effect of cobalt salt anion group on the electrocatalytic activity of Co-N-C catalyst [J]. Material guide, 2018, 32(3):362–367, 372. DOI:10.11896/j.issn.1005-023X.2018.03.003. [Google Scholar]
  26. CHEN, LINYUN, LIU, XIAOFANG, ZHENG, LIRONG, et al. Insights into the role of active site density in the fuel cell performance of Co-N-C catalysts[J]. Applied Catalysis, B. Environmental: An International Journal Devoted to Catalytic Science and Its Applications, 2019, 256117849-1-117849-8. DOI:10.1016/j.apcatb.2019.117849. [Google Scholar]
  27. Li Xiao, Jin-Meng Yang, Gao-Yuan Huang, Yue Zhao, Hai-Bin Zhu. Construction of efficient Mn-N-C oxygen reduction electrocatalyst from a Mn(II)-based MOF with N-rich organic linker[J]. Inorganic Chemistry Communications, 2020, 118(C). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.