Open Access
E3S Web Conf.
Volume 308, 2021
2021 6th International Conference on Materials Science, Energy Technology and Environmental Engineering (MSETEE 2021)
Article Number 02013
Number of page(s) 9
Section Environmental Ecology and Biochemical Testing
Published online 27 September 2021
  1. Britannica, The Editors of Encyclopaedia. “Coronavirus”. Encyclopedia Britannica, 23 Feb. 2021, Accessed 30 May 2021. [Google Scholar]
  2. Li, Fang et al. “Structure of SARS coronavirus spike receptor-binding domain complexed with receptor.” Science (New York N.Y.) vol. 309, 5742 (2005): 1864-8. doi:10.1126/science.1116480 [Google Scholar]
  3. Seyed Hosseini, Elahe et al. “The novel coronavirus Disease-2019 (COVID-19): Mechanism of action, detection and recent therapeutic strategies.” Virology vol. 551 (2020): 1-9. doi:10.1016/j.virol.2020.08.011 [CrossRef] [PubMed] [Google Scholar]
  4. “Coronavirus”. Who.Int, 2021, [Google Scholar]
  5. “The latest development of diagnostic testing technology in Covid-19”. CAS, 2021, [Google Scholar]
  6. du Plessis, Anton et al. “Comparison Of Medical And Industrial X-Ray Computed Tomography For Non-Destructive Testing”. Case Studies In Nondestructive Testing And Evaluation, vol 6, 2016, pp. 17-25. Elsevier BV, doi:10.1016/j.csndt.2016.07.001. [Google Scholar]
  7. Bartscher, M. et al. “Enhancement And Proof Of Accuracy Of Industrial Computed Tomography (CT) Measurements”. CIRPAnnals, vol 56, no. 1, 2007, pp. 495-498. Elsevier BV, doi:10.1016/j.cirp.2007.05.118. [Google Scholar]
  8. Andersen, Kristian G et al. “The proximal origin of SARS-CoV-2.” Nature medicine vol. 26, 4 (2020): 450-452. doi:10.1038/s41591-020-0820-9 [CrossRef] [PubMed] [Google Scholar]
  9. WHO Coronavirus Disease (COVID-19) Dashboard, 11 Sept. 2020, [Google Scholar]
  10. Qian Xuesong, Ding Hai, and Zheng Dechang. “The COVID-19 epidemic, the early prevention and control measures of the international community and the evaluation of their effects-an empirical study based on the perspectives of external prevention and internal control.” Financial Research 47.03 (2021): 4-18. doi: 10.16538 /j.cnki.jfe.20201115.403. [Google Scholar]
  11. Wei, Yujun et al. “COVID-19 prevention and control in China: grid governance.” Journal of public health (Oxford, England) vol. 43, 1 (2021): 76-81. doi:10.1093/pubmed/fdaa175 [CrossRef] [PubMed] [Google Scholar]
  12. Gelfand, Michele Jet al. “The relationship between cultural tightness-looseness and COVID-19 cases and deaths: a global analysis.” The Lancet. Planetary health vol. 5, 3 (2021): e135-e144. doi:10.1016/S2542-5196(20)30301-6 [CrossRef] [PubMed] [Google Scholar]
  13. Sheahan TP, Sims AC, Leist SR, et al. Comparative therapeutic efficacy of remdesivir and combination lopinavir, ritonavir, and interferon-beta against MERS-CoV. Nat Commun 2020; 11:222-222. [CrossRef] [PubMed] [Google Scholar]
  14. Agostini ML, Andres EL, Sims AC, et al. Coronavirus susceptibility to the antiviral remdesivir (GS-5734) is mediated by the viral polymerase and the proofreading exoribonuclease. mBio 2018;9(2):e00221-18-e00221-18. [Google Scholar]
  15. Brown AJ, Won JJ, Graham RL, et al. Broad-spectrum antiviral remdesivir inhibits human endemic and zoonotic delta coronaviruses with a highly divergent RNA dependent RNA polymerase. Antiviral Res 2019; 169:104541-104541. [CrossRef] [PubMed] [Google Scholar]
  16. Sheahan TP, Sims AC, Graham RL, et al. Broad-spectrum antiviral GS-5734 inhibits both epidemic and zoonotic coronaviruses. Sci Transl Med 2017; 9:eaal3653-eaal3653. [CrossRef] [PubMed] [Google Scholar]
  17. Peng Q, Peng R, Yuan B, et al. Structural basis of SARS-CoV-2 polymerase inhibition by Favipiravir. Innovation (N Y), 2021. DOI: 10.1016/j.xinn.2021.100080 [PubMed] [Google Scholar]
  18. Yung-Fang Tu, Chian-Shiu Chien, et al. A Review of SARS-CoV-2 and the Ongoing Clinical Trials. International journal of molecular sciences, 2020; p.9. [Google Scholar]
  19. An overview of therapeutic drugs of COVID-19 and its mechanism LIU Shu-lei,LIU Wei. No. 960th Hospital of PLA, Tai’an, Shandong 271000, China [Google Scholar]
  20. Yung-Fang Tu, Chian-Shiu Chien, et al. A Review of SARS-CoV-2 and the Ongoing Clinical Trials. International journal of molecular sciences, 2020; p.9. [Google Scholar]
  21. Wagstaffff K.M.; Sivakumaran, H.; Heaton S.M.; Harrich, D.; Jans D.A. Ivermectin is a specific inhibitor of importin alpha/beta-mediated nuclear importable to inhibit replication of HIV-1 and dengue virus. Biochem. J. 2012, 443, 851–856. [CrossRef] [CrossRef] [PubMed] [Google Scholar]
  22. Yang S.N.Y.; Atkinson S.C.; Wang, C.; Lee, A.; Bogoyevitch M.A.; Borg N.A.; Jans D.A. The broad-spectrum antiviral ivermectin targets the host nuclear transport importin alpha/beta1 heterodimer. Antivir. Res. 2020, 104760. [CrossRef] [Google Scholar]
  23. Caly, L.; Wagstaffff, K.; Jans D.A. Nuclear trafficking of proteins from RNA viruses: Potential target for antivirals? Antivir. Res. 2012, 95, 202–206. [CrossRef] [PubMed] [Google Scholar]
  24. Caly, L.; Druce J.D.; Catton M.G.; Jans D.A.; Wagstaffff K.M. The FDA-approved drug Ivermectin inhibits the replication of SARS-CoV-2 in vitro. Antivir. Res. 2020, 104787. [CrossRef] [PubMed] [Google Scholar]
  25. Corman V M, Landt O, Kaiser M, et al. Detection of 2019 novel coronavirus (SARS-CoV-2) by real-time RT PCR [J]. Euro Surveill, 2020, 25(3): 2000045. [Google Scholar]
  26. He Wei, Chang Bingcheng. Research progress on antiviral pharmacology and clinical research of chloroquine and hydroxychloroquine. Drug Evaluation Research. 2020, 1674-6376 (2020) 06-1015-06: p2. [Google Scholar]
  27. Lan, L.; Xu, D.; Ye, G.; Xia, C.; Wang, S.; Li, Y.; Xu, H. Positive RT-PCR Test Results in Patients Recovered From COVID-19. JAMA 2020. [CrossRef] [Google Scholar]
  28. Chen, J.; Lau Y.F.; Lamirande E.W.; Paddock C.D.; Bartlett J.H.; Zaki S.R.; Subbarao, K. Cellular Immune Responses to Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) Infection in Senescent BALB/c Mice: CD4+ T Cells Are Important in Control of SARS-CoV Infection. J. Virol. 2009, 84, 1289–1301. [CrossRef] [PubMed] [CrossRef] [PubMed] [Google Scholar]
  29. Duan, K. et al. Effectiveness of convalescent plasma therapy in severe COVID-19 patients. Proc. Natl Acad. Sci. USA 117, 9490–9496 (2020). [Google Scholar]
  30. Shen, C. et al. Treatment of 5 critically ill patients with COVID-19 with convalescent plasma. JAMA 323, 1582–1589 (2020). [CrossRef] [PubMed] [Google Scholar]
  31. Chen Bishan, Chen Jisheng. Study on the application of golimumab in novel coronavirus pneumonia [J]. Pharmacology Today, 2020, 30(4): 225-228. [Google Scholar]
  32. Zhu Yungui, Deng Ziwei, Liu Lihua, et al. New coronary pneumonia treatment protocols for the treatment of drug information compilation of drug information for the treatment of New Coronary Pneumonia (First Edition) [J]. Zhongnan Pharmacology, 2020, 18(3): 345-358. [Google Scholar]
  33. COVID-19 treatment protocol (trial version 7) [J]. Chinese Medicine, 2020, 15(6): 801-805. [Google Scholar]
  34. Zhao Cheng-qi,Jin Zeng-hua,Wang Xue-fen. Advances in the study of novel drugs for the treatment of COVID-19. Military Medical Journal of Southeast China, 2021, 23(1), 1672-271X(2021) 01-0058-06 [Google Scholar]
  35. Draft landscape and tracker of COVID-19 candidate vaccines (World Health Organization. 2021.) [Google Scholar]
  36. Pollet, Jeroen et al. “Recombinant protein vaccines, a proven approach against coronavirus pandemics. ” Advanced drug delivery reviews vol. 170 (2021): 71-82. doi:10.1016/j.addr.2021.01.001 [Google Scholar]
  37. Li, Lifeng et al. “SARS-CoV-2 vaccine candidates in rapid development.” Human vaccines & immunotherapeutics vol. 17, 3 (2021): 644-653. doi:10.1080/21645515.2020.1804777 [CrossRef] [PubMed] [Google Scholar]
  38. Zhu, Feng-Cai et al. “Immunogenicity And Safety Of A Recombinant Adenovirus Type-5-Vectored COVID-19 Vaccine In Healthy Adults Aged 18 Years Or Older: A Randomised, Double-Blind, Placebo-Controlled, Phase 2 Trial”. The Lancet, vol 396, no. 10249, 2020, pp. 479-488. Elsevier BV, doi: 10.1016/s0140-6736(20)31605-6. [Google Scholar]
  39. Zhu, Yao et al. ”Research Progress of Vaccine in novel coronavirus.” Preventive medicine 33.02(2021):143-148. doi:10.19485/j.cnki.issn2096-5087.2021.02.009. [Google Scholar]
  40. Lamb, Yvette N. “BNT162b2 mRNA COVID-19 Vaccine: First Approval.” Drugs vol. 81, 4 (2021): 495-501. doi:10.1007/s40265-021-01480-7 [CrossRef] [PubMed] [Google Scholar]
  41. Weinberg, Geoffrey A. “Live, Attenuated Influenza Vaccine: Present and Future Roles.” Journal of the Pediatric Infectious Diseases Society vol. 9, Supplement_1 (2020): S1-S2. doi:10.1093/jpids/piz100 [CrossRef] [PubMed] [Google Scholar]
  42. “Novel coronavirus diagnosis and treatment plan (trial eighth edition).” Chinese Journal of Clinical Infectious Diseases 13.05(2020):321-328. doi:. [Google Scholar]
  43. Wang, Meng et al. “Evaluation of current medical approaches for COVID-19: a systematic review and meta-analysis.” BMJ supportive & palliative care vol. 11, 1 (2021): 45-52. doi:10.1136/bmjspcare-2020-002554 [CrossRef] [PubMed] [Google Scholar]
  44. Duan, Kai et al. “Effectiveness of convalescent plasma therapy in severe COVID-19 patients.” Proceedings of the National Academy of Sciences of the United States of America vol. 117, 17 (2020): 9490-9496. doi:10.1073/pnas.2004168117 [CrossRef] [PubMed] [Google Scholar]
  45. Xie, Yun et al. “ Effect of regular intravenous immunoglobulin therapy on prognosis of severe pneumonia in patients with COVID-19.” The Journal of infection vol. 81, 2 (2020): 318-356. doi:10.1016/j.jinf.2020.03.044 [CrossRef] [PubMed] [Google Scholar]
  46. Salama, Carlos et al. “ Tocilizumab in Patients Hospitalized with Covid-19 Pneumonia.” The New England journal of medicine vol. 384, 1 (2021): 20-30. doi:10.1056/NEJMoa2030340 [CrossRef] [PubMed] [Google Scholar]
  47. Tleyjeh, Imad M et al. “ Efficacy and safety of tocilizumab in COVID-19 patients: a living systematic review and meta-analysis. ” Clinical microbiology and infection: the official publication of the European Society of Clinical Microbiology and Infectious Diseases vol. 27, 2 (2021): 215-227. doi:10.1016/j.cmi.2020.10.036 [Google Scholar]
  48. Chen, Rong-Chang et al. “Treatment of severe acute respiratory syndrome with glucosteroids: the Guangzhou experience.” Chest vol. 129, 6 (2006): 1441-52. doi:10.1378/chest.129.6.1441 [CrossRef] [PubMed] [Google Scholar]
  49. Arabi, Yaseen M et al. “Corticosteroid Therapy for Critically Ill Patients with Middle East Respiratory Syndrome. ” American journal of respiratory and critical care medicine vol. 197, 6 (2018): 757-767. doi:10.1164/rccm.201706-1172OC [CrossRef] [PubMed] [Google Scholar]
  50. Yang, J-W et al. “Corticosteroid administration for viral pneumonia: COVID-19 and beyond.” Clinical microbiology and infection: the official publication of the European Society of Clinical Microbiology and Infectious Diseases vol. 26, 9 (2020): 1171-1177. doi:10.1016/j.cmi.2020.06.020 [Google Scholar]
  51. Recovery Collaborative Group et al. “Dexamethasone in Hospitalized Patients with Covid-19.” The New England journal of medicine vol. 384, 8 (2021): 693-704. doi:10.1056/NEJMoa2021436 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.