Open Access
E3S Web Conf.
Volume 308, 2021
2021 6th International Conference on Materials Science, Energy Technology and Environmental Engineering (MSETEE 2021)
Article Number 02012
Number of page(s) 7
Section Environmental Ecology and Biochemical Testing
Published online 27 September 2021
  1. Alzheimer’s Disease International, (2019). World Alzheimer Report 2019. [Google Scholar]
  2. Nam, E., Nam, G., Lim M.H. (2019) Synaptic copper, amyloid-β, and neurotransmitters in Alzheimer’s disease. [Google Scholar]
  3. Shibin, M., Senthil, V., Saravanan, S., Diraviyam, T., Balamurugan P. (2020) Role of Tau in Alzheimer’s disease: The prime pathological player. International Journal of Biological Macromolecules, 63, 1599-1617. [Google Scholar]
  4. Zhou H. (2018) Study on the pathogenesis and prevention of Alzheimer’s Disease. Ph D. Thesis, Suzhou University, China. [Google Scholar]
  5. Kardos, J., Kovács, I., Hajós, F., et al. (1989) Nerve endings from rat brain tissue release copper upon depolarization. A possible role in regulating neuronal excitability. Neuroscience letters, 103(2): 139-144. [CrossRef] [PubMed] [Google Scholar]
  6. da Silva G.F.Z., Ming L.J. (2007) Metallo-ROS in Alzheimer’s Disease: Oxidation of Neurotransmitters by CuII -β -Amyloid and Neuropathology of the Disease. Angewandte Chemie International Edition, 46(18): 3337-3341. [Google Scholar]
  7. Cleveland, D.W, Hwo, S.Y, Kirschner M.W. (1977) Purification of tau, a microtubule-associated protein that induces assembly of microtubules from purified tubulin. Journal of molecular biology, 116(2): 207-225. [CrossRef] [PubMed] [Google Scholar]
  8. Das, BC., Pradhan, S., Ojha D.P., Das, A., Hosmane N.S., et al. (2018) The Role of Tau Protein in Diseases. Ann Adv Chem, 2: 001-016. [Google Scholar]
  9. Lee H.G., Perry, G., Moreira P.I., et al. (2005) Tau phosphorylation in Alzheimer’s disease: pathogen or protector?. Trends in Molecular Medicine, 11(4): 164-169. [CrossRef] [PubMed] [Google Scholar]
  10. Reddy P.H. (2017) A critical assessment of research on neurotransmitters in Alzheimer’s disease. Journal of Alzheimer’s Disease, 57(4): 969-974. [Google Scholar]
  11. Mohandas, E., Rajmohan, V., Raghunath, B. (2009) Neurobiology of Alzheimer’s disease. Indian journal of psychiatry, 51(1): 55. [CrossRef] [PubMed] [Google Scholar]
  12. Soreq, H. (2015) Checks and balances on cholinergic signaling in brain and body function. Trends in neurosciences, 38(7): 448-458. [CrossRef] [PubMed] [Google Scholar]
  13. Sun, Z., Zhu, J., Meng, J., Zuo, C., Han Y., Li, P., Sha, J., Fan, Q. (2017) Study About Brain Neurotransmitter Changes in Patients with Alzheimer’s Disease. Medical Innovation of China, 14(14): 9-12. [Google Scholar]
  14. Rajmohan, R., Reddy P.H. (2017) Amyloid-beta and phosphorylated tau accumulations cause abnormalities at synapses of Alzheimer’s disease neurons. Journal of Alzheimer’s Disease, 57(4): 975-999. [Google Scholar]
  15. Bai, X., Zhuang, S., Zhang, G. (2013) Research progress of Aβ protein on Alzheimer’s disease and drug. The Journal of Medical Theory and practice, 26(19): 2552-2553. [Google Scholar]
  16. Eric, R., et al. (2016) Phase 3 solanezumab trials: Secondary outcomes in mild Alzheimer’s disease patients. Alzheimer’s & Dementia: The Journal of the Alzheimer’s Association, 12(2): 110-120. [Google Scholar]
  17. Liang, Z., Fang, L., Li, H., Liu, J., Tan, Q., Long, S., Xu, G. (2018) Current situation and new progress of drug treatment for Alzheimer’s disease. Medical Journal of National Defending Forces in Southwest China, 28(01): 85-87. [Google Scholar]
  18. Farlow, M R., Andreasen, N., Riviere M, et al. (2015) Long-term treatment with active Aβ immunotherapy with CAD106 in mild Alzheimer’s disease. Alzheimer’s Research & Therapy, 7(1):1-13. [Google Scholar]
  19. Theunis, C., Crespo-Biel, N., Gafner, V., et al. Efficacy and safety of a liposome-based vaccine against protein Tau, assessed in tau. P301L mice that model tauopathy. PLoS One, 8(8): e72301. [Google Scholar]
  20. Panza, F., Solfrizzi, V., Seripa, D., et al. (2016) Tau-based therapeutics for Alzheimer’s disease: active and passive immunotherapy. Immunotherapy, 8(9): 1119-1134. [CrossRef] [PubMed] [Google Scholar]
  21. Lovestone, S., Boada, M., Dubois, B., et al. (2015) A phase II trial of tideglusib in Alzheimer’s disease. Journal of Alzheimer’s Disease, 2015(45): 75-88. [Google Scholar]
  22. Gauthier, S., Feldman, H H., Schneider, L S., et al. (2016) Efficacy and safety of tau-aggregation inhibitor therapy in patients with mild or moderate Alzheimer’s disease: a randomised, controlled, double-blind, parallel-arm, phase 3 trial. Lancet, 388(10062): 2873-2884. [CrossRef] [PubMed] [Google Scholar]
  23. Li, R. (2013) Current research status of Alzheimer’s disease. Journal of Shenyang Medical College, 15(03): 129-133. [Google Scholar]
  24. Cheng, P., Li, T. (2018) Research progress of acetylcholinesterase inhibitors in the treatment of Alzheimer’disease. Science and technology innovation 018(09): 50-51. [Google Scholar]
  25. Wang, K., Liu W., (2019) Sang Z. Progress of multi-target diease. Chin Pharm J, 54(5): 352-359. [Google Scholar]
  26. Wang, Q., Lv, J., Hu, Y., Liu, L. (2020) Pathogenesis and New Therapeutic Drugs of Alzheimer Disease. Chinese Pharmaceutical Journal, 55(23): 1939-1947. [Google Scholar]
  27. Zhang, J., Wang, R. (2014) Research progress in the pathogenesis of Alzheimer ’ s disease. Journal of Capital Medical University, 35(06): 721-724. [Google Scholar]
  28. de la Monte S.M., Wands J.R. (2005) Review of insulin and insulin-like growth factor expression signaling and malfunction in the central nervous system. J Alzheimers Dis, 7(1): 45-61. [CrossRef] [PubMed] [Google Scholar]
  29. Zhang, W., Liu, H., Zhang, Y., Wang, M. (2021) Research Progresses on Mechanisms of Inflammation in Alzheimer ’ s Disease. Life Science Research, 25(02): 144-150. [Google Scholar]
  30. Yang, R., Zhang, N. (2015) Research Progress on the mechanism of curcumin on Alzheimer’s disease. Journal of Southeast University, 34(1): 152-155. [Google Scholar]
  31. Liang, Y., Cao, G., Zhang, W. (2017) Research progress on inflammation of Alzheimer’s disease and intervention of traditional Chinese medicine. Chinese Pharmacological Bulletin, 35(5): 597-602. [Google Scholar]
  32. Duan, L., Si, J., Liu, P., (2015) Research progress in medication of Alzheimer’s disease. Hebei Medical Journal, 37(07): 1077-1080. [Google Scholar]
  33. Philippidis, A. (2014) Gene therapy briefs. Hum Gene Ther, 25(7): 570-572. [CrossRef] [PubMed] [Google Scholar]
  34. Matsumoto, Y., Niimi, N., Kohyama, K. (2013) Development of a new DNA vaccine for Alzheimer disease targeting a wide range of aβ species and amyloidogenic peptides. PLoS One, 8(9): e75203. [CrossRef] [PubMed] [Google Scholar]
  35. Ben Menachem-Zidon, O., Ben-Menahem, Y., Ben Hur, T., et al. (2015) Intra-hippocampal transplantation of neural precursor cells with transgenic over-expression of LF-1 receptor antagonist rescues memory and neurogenesis impairments in an Alzheimer’s disease model. Neuropsychopharmacology, 39(2): 401-404. [Google Scholar]
  36. Wu, S., Sasaki, A., Yoshimoto, R., et al. (2018) Neural stem cells improve learning and memory in rats with Alzheimer’s disease[J]. Pathobiology, 75(3): 186-194. [Google Scholar]
  37. Li, J., Li, W., Zhou, J. (2015) Gene therapy and Alzheimer’s disease. J Cent South Univ (Med Sci), 40(04): 428-432. [Google Scholar]
  38. Zhu, Q., Xu, Y., Liu, Z. (2016) Research progress of neural stem cells in the treatment of Alzheimer’s disease. Chongqing Medicine, 2016, 45(30): 4286-4288. [Google Scholar]
  39. Cheng, X., Luo, H. (2011) Research progress in Alzheimer’s disease treated by the transplantation of stem cells. Basic & Clinical Medicine, 31(02): 218-221. [Google Scholar]
  40. Baron, R., Nemirovsky, A., Harpaz, I., et al. (2008) IFN-gamma enhances neurogenesis in wild-type mice and in a mouse model of Alzheimer’s disease. FASEB J, 22(8): 2843-2852. [CrossRef] [PubMed] [Google Scholar]
  41. Chen, S., Cai, Q., Shen, Y., et al. (2014) Neural Stem Cell Transplantation Improves Spatial Learning and Memory via Neuronal Regeneration in Amyloid-β Precursor Protein/presenilin 1/tau Triple Transgenic Mice. American Journal of Alzheimer’s Disease & Other Dementias, 29(2):142-149. [Google Scholar]
  42. Lee, J., Jin H., Bae J., (2009) Bone marrow-derived mesenchymal stem cells reduce brain amyloid-beta deposition and accelerate the activation of microglia in an acutely induced Alzheimer’s disease mouse model. Neuroscience letters, 450(2): 136-141. [CrossRef] [PubMed] [Google Scholar]
  43. Liao, B., Li, Y., Tang, N., et al. (2017) Evaluation and Study of the Effect of Repetitive Transcranial Magnetic Stimulation in Treatment of Mental and Behavioral Symptoms of Alzheimer Disease. Medical Innovation of China, 14(34): 21-24. [Google Scholar]
  44. Yu, X., Zhang, Y. (2020) Advances on the treatment of Alzheimer’s disease with deep brain stimulation. Journal of Shangdong University (Health Science), 58(08): 22-27+33. [Google Scholar]
  45. Qian, Y., Shao, Y., Lu, S., Wang, J., Chen, Z. (2019) Research Progress on Traditional Chinese Medicine in the Treatment of Alzheimer’s Disease. Journal of Nanjing University of Chinese Medicine, 35(06): 761-766. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.