Open Access
Issue
E3S Web Conf.
Volume 308, 2021
2021 6th International Conference on Materials Science, Energy Technology and Environmental Engineering (MSETEE 2021)
Article Number 02015
Number of page(s) 9
Section Environmental Ecology and Biochemical Testing
DOI https://doi.org/10.1051/e3sconf/202130802015
Published online 27 September 2021
  1. M. Lacroix, R. Riscal, G. Arena, et al. (2020) Metabolic functions of the tumor suppressor p53: Implications in normal physiology, metabolic disorders, and cancer. Mol Metab, 33: 2-22. [CrossRef] [PubMed] [Google Scholar]
  2. A. Feki and I. Irminger-Finger. (2004) Mutational spectrum of p53 mutations in primary breast and ovarian tumors. Crit Rev Oncol Hematol, 52, (2): 103-16. [CrossRef] [PubMed] [Google Scholar]
  3. J. D. Oliner, A. Y. Saiki, and S. Caenepeel. (2016) The Role of MDM2 Amplification and Overexpression in Tumorigenesis. Cold Spring Harb Perspect Med, 6, (6). [Google Scholar]
  4. S. Fang, J. P. Jensen, R. L. Ludwig, et al. (2000) Mdm2 is a RING finger-dependent ubiquitin protein ligase for itself and p53. J Biol Chem, 275, (12): 8945-51. [CrossRef] [PubMed] [Google Scholar]
  5. R. Honda and H. Yasuda. (2000) Activity of MDM2, a ubiquitin ligase, toward p53 or itself is dependent on the RING finger domain of the ligase. Oncogene, 19, (11): 1473-6. [CrossRef] [PubMed] [Google Scholar]
  6. X. Wu, J. H. Bayle, D. Olson, et al. (1993) The p53-mdm-2 autoregulatory feedback loop. Genes Dev, 7, (7A): 1126-32. [CrossRef] [PubMed] [Google Scholar]
  7. D. A. Freedman, L. Wu, and A. J. Levine. (1999) Functions of the MDM2 oncoprotein. Cell Mol Life Sci, 55, (1): 96-107. [CrossRef] [PubMed] [Google Scholar]
  8. T. Juven-Gershon and M. Oren. (1999) Mdm2: the ups and downs. Mol Med, 5, (2): 71-83. [CrossRef] [PubMed] [Google Scholar]
  9. K. Seipel, M. A. T. Marques, C. Sidler, et al. (2018) MDM2-and FLT3-inhibitors in the treatment of FLT3-ITD acute myeloid leukemia, specificity and efficacy of NVP-HDM201 and midostaurin. Haematologica, 103, (11): 1862-1872. [CrossRef] [PubMed] [Google Scholar]
  10. G. Zauli, C. Celeghini, E. Melloni, et al. (2012) The sorafenib plus nutlin-3 combination promotes synergistic cytotoxicity in acute myeloid leukemic cells irrespectively of FLT3 and p53 status. Haematol-Hematol J, 97, (11): 1722-1730. [Google Scholar]
  11. B. Vu, P. Wovkulich, G. Pizzolato, et al. (2013) Discovery of RG7112: A Small-Molecule MDM2 Inhibitor in Clinical Development. Acs Med Chem Lett, 4, (5): 466-469. [CrossRef] [PubMed] [Google Scholar]
  12. Y. Fang, G. Liao, and B. Yu. (2020) Small-molecule MDM2/X inhibitors and PROTAC degraders for cancer therapy: advances and perspectives. Acta Pharm Sin B, 10, (7): 1253-1278. [CrossRef] [PubMed] [Google Scholar]
  13. C. Tovar, B. Graves, K. Packman, et al. (2013) MDM2 small-molecule antagonist RG7112 activates p53 signaling and regresses human tumors in preclinical cancer models. Cancer Res, 73, (8): 2587-97. [CrossRef] [PubMed] [Google Scholar]
  14. M. Andreeff, K. R. Kelly, K. Yee, et al. (2016) Results of the Phase I Trial of RG7112, a Small-Molecule MDM2 Antagonist in Leukemia. Clin Cancer Res, 22, (4): 868-876. [CrossRef] [PubMed] [Google Scholar]
  15. I. Ray-Coquard, J. Y. Blay, A. Italiano, et al. (2012) Effect of the MDM2 antagonist RG7112 on the P53 pathway in patients with MDM2-amplified, well-differentiated or dedifferentiated liposarcoma: an exploratory proof-of-mechanism study. Lancet Oncol, 13, (11): 1133-1140. [CrossRef] [PubMed] [Google Scholar]
  16. R. Kurzrock, J. Y. Blay, B. B. Nguyen, et al. (2012) A phase I study of MDM2 antagonist RG7112 in patients (pts) with relapsed/refractory solid tumors. J Clin Oncol, 30, (15). [Google Scholar]
  17. E. Mahfoudhi, L. Lordier, C. Marty, et al. (2016) P53 activation inhibits all types of hematopoietic progenitors and all stages of megakaryopoiesis. Oncotarget, 7, (22): 31980-31992. [CrossRef] [PubMed] [Google Scholar]
  18. A. Obrador-Hevia, E. Martinez-Font, I. Felipe-Abrio, et al. (2015) RG7112, a small-molecule inhibitor of MDM2, enhances trabectedin response in soft tissue sarcomas. Cancer Invest, 33, (9): 440-50. [CrossRef] [PubMed] [Google Scholar]
  19. A. Patnaik, A. Tolcher, M. Beeram, et al. (2015) Clinical pharmacology characterization of RG7112, an MDM2 antagonist, in patients with advanced solid tumors. Cancer Chemother Pharmacol, 76, (3): 587-95. [CrossRef] [PubMed] [Google Scholar]
  20. C. Iancu-Rubin, G. Mosoyan, K. Glenn, et al. (2014) Activation of p53 by the MDM2 inhibitor RG7112 impairs thrombopoiesis. Exp Hematol, 42, (2): 137-45 e5. [CrossRef] [PubMed] [Google Scholar]
  21. I. Ray-Coquard, J. Y. Blay, A. Italiano, et al. (2012) Effect of the MDM2 antagonist RG7112 on the P53 pathway in patients with MDM2-amplified, well-differentiated or dedifferentiated liposarcoma: an exploratory proof-of-mechanism study. Lancet Oncol, 13, (11): 1133-40. [CrossRef] [PubMed] [Google Scholar]
  22. N. Portman, H. H. Milioli, S. Alexandrou, et al. (2020) MDM2 inhibition in combination with endocrine therapy and CDK4/6 inhibition for the treatment of ER-positive breast cancer. Breast Cancer Res, 22, (1): 87. [CrossRef] [PubMed] [Google Scholar]
  23. D. D. Fang, Q. Q. Tang, Y. H. Kong, et al. (2019) MDM2 inhibitor APG-115 synergizes with PD-1 blockade through enhancing antitumor immunity in the tumor microenvironment. J Immunother Cancer, 7, (1). [Google Scholar]
  24. H. Sun, Q. Q. Tang, D. Fang, et al. (2021) MDM2 Inhibitor APG-115 Suppresses Cell Proliferation and Tumor Growth in Preclinical Models Of NSCLC Harboring STK11 Mutations. J Thorac Oncol, 16, (3): S132-S133. [Google Scholar]
  25. P. Montesinos, B. M. Beckermann, O. Catalani, et al. (2020) MIRROS: a randomized, placebo-controlled, Phase III trial of cytarabine ± idasanutlin in relapsed or refractory acute myeloid leukemia. Future Oncology, 16, (13): 807-815. [Google Scholar]
  26. B. Higgins, C. Tovar, K. Glenn, et al. (2013) Antitumor activity of the MDM2 antagonist RG7388. Mol Cancer Ther, 12, (11). [Google Scholar]
  27. M. Dangl, Y. C. Chien, C. Lehmann, et al. (2014) Synergistic anticancer activity of clinical stage, non-genotoxic apoptosis inducing agents RG7388 (MDM2 antagonist) and ABT-199 (GDC-0199, BCL2 inhibitor) in p53 wild-type AML tumor models. Cancer Res, 74, (19). [Google Scholar]
  28. C. G. Hoffman-Luca, D. Ziazadeh, D. McEachern, et al. (2015) Elucidation of Acquired Resistance to Bcl-2 and MDM2 Inhibitors in Acute Leukemia In Vitro and In Vivo. Clin Cancer Res, 21, (11): 2558-2568. [CrossRef] [PubMed] [Google Scholar]
  29. R. Q. Pan, V. Ruvolo, H. Mu, et al. (2015) BCL-2 Inhibition By ABT-199 (Venetoclax/GDC-0199) and p53 Activation By RG7388 (Idasanutlin) Reciprocally Overcome Leukemia Apoptosis Resistance to Either Strategy Alone: Efficacy and Mechanisms. Blood, 126, (23). [Google Scholar]
  30. R. Q. Pan, K. Kojima, Z. Z. Zheng, et al. (2014) Activation of p53 By Novel MDM2 Antagonist RG7388 Overcomes AML Inherent and Acquired Resistance to Bcl-2 Inhibitor ABT-199 (GDC-0199). Blood, 124, (21). [Google Scholar]
  31. V. Arnhold, K. Schmelz, J. Proba, et al. (2018) Reactivating TP53 signaling by the novel MDM2 inhibitor DS-3032b as a therapeutic option for high-risk neuroblastoma. Oncotarget, 9, (2): 2304-2319. [CrossRef] [PubMed] [Google Scholar]
  32. F. Ravandi, I. Gojo, M. M. Patnaik, et al. (2016) A phase I trial of the human double minute 2 inhibitor (MK-8242) in patients with refractory/recurrent acute myelogenous leukemia (AML). Leuk Res, 48: 92-100. [CrossRef] [PubMed] [Google Scholar]
  33. A. J. Wagner, U. Banerji, A. Mahipal, et al. (2017) Phase I Trial of the Human Double Minute 2 Inhibitor MK-8242 in Patients With Advanced Solid Tumors. J Clin Oncol, 35, (12): 1304-1311. [CrossRef] [PubMed] [Google Scholar]
  34. W. L. Gluck, M. M. Gounder, R. Frank, et al. (2020) Phase 1 study of the MDM2 inhibitor AMG 232 in patients with advanced P53 wild-type solid tumors or multiple myeloma. Invest New Drugs, 38, (3): 831-843. [CrossRef] [PubMed] [Google Scholar]
  35. X. Zhang, R. Zhang, H. Chen, et al. (2020) KRT-232 and navitoclax enhance trametinib's anti-Cancer activity in non-small cell lung cancer patient-derived xenografts with KRAS mutations. Am J Cancer Res, 10, (12): 4464-4475. [PubMed] [Google Scholar]
  36. S. Champiat, L. Dercle, S. Ammari, et al. (2017) Hyperprogressive Disease Is a New Pattern of Progression in Cancer Patients Treated by Anti-PD-1/PD-L1. Clin Cancer Res, 23, (8): 1920-1928. [CrossRef] [PubMed] [Google Scholar]
  37. S. Kato, A. Goodman, V. Walavalkar, et al. (2017) Hyperprogressors after Immunotherapy: Analysis of Genomic Alterations Associated with Accelerated Growth Rate. Clin Cancer Res, 23, (15): 4242-4250. [CrossRef] [PubMed] [Google Scholar]
  38. M. Konopleva, G. Martinelli, N. Daver, et al. (2020) MDM2 inhibition: an important step forward in cancer therapy. Leukemia, 34, (11): 2858-2874. [CrossRef] [PubMed] [Google Scholar]
  39. M. A. Cortez, C. Ivan, D. Valdecanas, et al. (2016) PDL1 Regulation by p53 via miR-34. J Natl Cancer Inst, 108, (1). [Google Scholar]
  40. D. A. Fang, Q. Tang, Y. Kong, et al. (2019) MDM2 inhibitor APG-115 synergizes with PD-1 blockade through enhancing antitumor immunity in the tumor microenvironment. J Immunother Cancer, 7, (1): 327. [CrossRef] [PubMed] [Google Scholar]
  41. M. Olivier, M. Hollstein, and P. Hainaut. (2010) TP53 mutations in human cancers: origins, consequences, and clinical use. Cold Spring Harb Perspect Biol, 2, (1): a001008. [CrossRef] [PubMed] [Google Scholar]
  42. Q. Y. Luo, W. T. Pan, S. N. Zhou, et al. (2020) A Novel BCL-2 Inhibitor APG-2575 Exerts Synthetic Lethality With BTK or MDM2-p53 Inhibitor in Diffuse Large B-Cell Lymphoma. Oncol Res, 28, (4): 331-344. [CrossRef] [PubMed] [Google Scholar]
  43. N. Cancer Genome Atlas Research, T. J. Ley, C. Miller, et al. (2013) Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N Engl J Med, 368, (22): 2059-74. [CrossRef] [PubMed] [Google Scholar]
  44. A. L. Gagez and G. Cartron. (2014) Obinutuzumab: a new class of anti-CD20 monoclonal antibody. Curr Opin Oncol, 26, (5): 484-91. [CrossRef] [PubMed] [Google Scholar]
  45. T. Pirich, E. Zwickl-Traxler, M. Pecherstorfer, et al. (2018) Tolerability of obinutuzumab therapy in patients with rituximab-relapsed/refractory B-cell malignancies -a retrospective single center cohort study. Oncotarget, 9, (52): 29944-29956. [CrossRef] [PubMed] [Google Scholar]
  46. M. Jak, G. G. van Bochove, E. A. Reits, et al. (2011) CD40 stimulation sensitizes CLL cells to lysosomal cell death induction by type II anti-CD20 mAb GA101. Blood, 118, (19): 5178-88. [CrossRef] [PubMed] [Google Scholar]
  47. F. Herting, S. Herter, T. Friess, et al. (2016) Antitumour activity of the glycoengineered type II anti-CD20 antibody obinutuzumab (GA101) in combination with the MDM2-selective antagonist idasanutlin (RG7388). Eur J Haematol, 97, (5): 461-470. [CrossRef] [PubMed] [Google Scholar]
  48. J. Kocik, M. Machula, A. Wisniewska, et al. (2019) Helping the Released Guardian: Drug Combinations for Supporting the Anticancer Activity of HDM2 (MDM2) Antagonists. Cancers (Basel), 11, (7). [Google Scholar]
  49. L. Chen, F. Pastorino, P. Berry, et al. (2019) Preclinical evaluation of the first intravenous small molecule MDM2 antagonist alone and in combination with temozolomide in neuroblastoma. Int J Cancer, 144, (12): 3146-3159. [CrossRef] [PubMed] [Google Scholar]
  50. D. Phelps, K. Bondra, S. Seum, et al. (2015) Inhibition of MDM2 by RG7388 confers hypersensitivity to X-radiation in xenograft models of childhood sarcoma. Pediatr Blood Cancer, 62, (8): 1345-52. [CrossRef] [PubMed] [Google Scholar]
  51. D. Bocangel, S. Sengupta, S. Mitra, et al. (2009) p53-Mediated down-regulation of the human DNA repair gene O6-methylguanine-DNA methyltransferase (MGMT) via interaction with Sp1 transcription factor. Anticancer Res, 29, (10): 3741-50. [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.