Open Access
E3S Web Conf.
Volume 308, 2021
2021 6th International Conference on Materials Science, Energy Technology and Environmental Engineering (MSETEE 2021)
Article Number 02016
Number of page(s) 4
Section Environmental Ecology and Biochemical Testing
Published online 27 September 2021
  1. American Psychiatric Association. Diagnostic and statistical manual of mental disorders. 5th. Arlington, VA: American Psychiatric Publishing; 2013. [Google Scholar]
  2. Kessler, R. C., Berglund, P., Demler, O., Jin, R., Koretz, D., Merikangas, K. R., Rush, A. J., Walters, E. E., Wang, P. S., & National Comorbidity Survey Replication (2003). The epidemiology of major depressive disorder: results from the National Comorbidity Survey Replication (NCS-R). JAMA, 289(23), 3095–3105. [Google Scholar]
  3. WHO Depression data fact sheet. Geneva: World Health Organization; (2020). Available from: (Accessed July 08, 2020) [Google Scholar]
  4. Hirschfeld R. M. (2000). History and evolution of the monoamine hypothesis of depression. The Journal of clinical psychiatry, 61 Suppl 6, 4–6. [CrossRef] [PubMed] [Google Scholar]
  5. Lieberman J. History of the use of antidepressants in primary care. J Clin Psychiatry (2003) 5(Suppl 7): 6– 10. [Google Scholar]
  6. Hillhouse, T. M., & Porter, J. H. (2015). A brief history of the development of antidepressant drugs: from monoamines to glutamate. Experimental and clinical psychopharmacology, 23 (1), 1–21. [CrossRef] [PubMed] [Google Scholar]
  7. Delgado PL. Depression: the case for a monoamine deficiency. J Clin Psychiatry. 2000;61 Suppl 6:7-11. PMID: 10775018. [CrossRef] [PubMed] [Google Scholar]
  8. Heninger, G. R., Delgado, P. L., & Charney, D. S. (1996). The revised monoamine theory of depression: a modulatory role for monoamines, based on new findings from monoamine depletion experiments in humans. Pharmacopsychiatry, 29(1), 2–11. [CrossRef] [PubMed] [Google Scholar]
  9. Fournier J C, Derubeis R J, Hollon S D, et al. Antidepressant drug effects and depression severity: a patient-level meta-analysis [J]. J Am Med Assoc, 2010, 303(1): 47-53. [Google Scholar]
  10. Wu ML, Deng JF. Fatal serotonin toxicity caused by moclobemide and fluoxetine overdose [J]. Chang Gung Med J, 2011, 34(6): 644-649. [PubMed] [Google Scholar]
  11. Yatham L N, Liddle P F, Shiah IS, et al. Brain serotonin 2 receptors in major depression: a positron emission tomography study [J]. Arch Gen Psychiat, 2000, 57 (9): 850-859. [Google Scholar]
  12. Artigas F, Romero L, De Montigny C, et al. Acceleration of the effect of selected antidepressant drugs in major depression by 5-HT1A antagonists [J]. Trends Neurosci, 1996, 19(9): 378-383 [CrossRef] [PubMed] [Google Scholar]
  13. Xu X, Luo J. Mutations of N-methyl-D-aspartate receptor subunits in epilepsy [J]. Neurosci Bull, 2018, 34(3): 549-565. [CrossRef] [PubMed] [Google Scholar]
  14. James W, Murrou G. Ketamine for depression: an update [J]. Biol Psychiat, 2016, 80 (6): 416-418. [Google Scholar]
  15. Duman R, Aghaianian G, Sanacora G, et al. Synaptic plasticity and depression: new insights from stress and rapid-acting antidepressants [J]. Nat Med, 2016, 22(3): 238-249. [CrossRef] [PubMed] [Google Scholar]
  16. Zhang JC, Li Sx, Hashimoto K. R (-) -ketamine shows greater potency and longer lasting antidepressant effects than S (+) -ketamine[J]. Pharmacol Biochem Behav, 2014, 116: 137-141. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.