Open Access
E3S Web Conf.
Volume 309, 2021
3rd International Conference on Design and Manufacturing Aspects for Sustainable Energy (ICMED-ICMPC 2021)
Article Number 01219
Number of page(s) 5
Published online 07 October 2021
  1. R. Kuziak, R. Kawalla, and S. Waengler, Advanced High Strength Steels for Automotive Industry, Arch. Civ. Mech. Eng., 2008, 8(2), p 103–117. [Google Scholar]
  2. Dharavath B, Morchhale A, Singh SK, Kotkunde N, Naik MT. Experimental determination and theoretical prediction of limiting strains for ASS 316L at hot forming conditions. Journal of Materials Engineering and Performance. 2020 Jul; 29(7):4766–78. [Google Scholar]
  3. Dharavath B, ul Haq A, Buddi T, Singh SK, Naik MT. Comparative study of ASS 316L on formability at room temperature and super plastic region. Advances in Materials and Processing Technologies. 2020 Apr 2; 6(2):384–95. [Google Scholar]
  4. C.C. Tasan, M. Diehl, D. Yan, M. Bechtold, F. Roters, L. Schemmann, C. Zheng, N. Peranio, D. Ponge, M. Koyama, K. Tsuzaki, and D. Raabe, An Overview of Dual-Phase Steels: Advances in Microstructure-Oriented Processing and Micromechanically Guided Design, Annu. Rev. Mater. Res., 2015, 45(1), p 391–431. [Google Scholar]
  5. Q. Lai, L. Brassart, O. Bouaziz, M. Goune´, M. Verdier, G. Parry, A. Perlade, Y. Bre´chet, and T. Pardoen, Influence of Martensite Volume Fraction and Hardness on the Plastic Behavior of Dual-Phase Steels: Experiments and Micromechanical Modeling, Int. J. Plast, 2016, 80, p 187–203. [Google Scholar]
  6. S. Sodjit and V. Uthaisangsuk, A Micromechanical Flow Curve Model for Dual Phase Steels, J. Met. Mater. Miner., 2012, 22(1), p 87–97 [Google Scholar]
  7. G. Avramovic-Cingara, Y. Ososkov, M.K. Jain, and D.S. Wilkinson, Effect of Martensite Distribution on Damage Behaviour in DP600 Dual Phase Steels, Mater. Sci. Eng. A, 2009, 516(1), p 7–16. [CrossRef] [Google Scholar]
  8. K. Peng, K. Qian, and W. Chen, Effect of Dynamic Strain Aging on High Temperature Properties of Austenitic Stainless Steel, Mater. Sci. Eng. A, 2004, 379(1), p 372–377. [Google Scholar]
  9. Feng, C.; Qin, G.; Meng, X.; Geng, P. Defect Evolution of 409L Stainless Steel in High-Speed TIG Welding. Mater. Manuf. Processes. 2020, 35(2), 179–186. [Google Scholar]
  10. Kotkunde, N.; Badrish, A.; Morchhale, A.; Takalkar, P.; Singh, S. K. Warm Deep Drawing Behavior of Inconel 625 Alloy Using Constitutive Modelling and Anisotropic Yield Criteria. Int. J. Mater. Form. 2019. [Google Scholar]
  11. Seyedkashi SM, Cho JR, Lee SH, Moon YH. Feasibility of underwater laser forming of laminated metal composites. Materials and Manufacturing Processes. 2018 Apr 4; 33(5):546–51. [Google Scholar]
  12. Badrish, A.; Morchhale, A.; Kotkunde, N.; Singh, S. K. Parameter Optimization in the Thermo-Mechanical V-Bending Process to Minimize Springback of Inconel 625 Alloy. Arab. J. Sci. Eng. 2020. [Google Scholar]
  13. Satish, D.R.; Feyissa, F.; Kumar, D.R. Cryorolling and Warm Forming of AA6061 Aluminum Alloy Sheets. Mater. Manuf. Processes. 2017, 32 (12), 1345–1352. [Google Scholar]
  14. Badrish, A.; Morchhale, A.; Kotkunde, N.; Singh, S. K. Influence of Material Modeling on Warm Forming Behavior of Nickel Based Super Alloy. Int. J. Mater. Form. 2020. [Google Scholar]
  15. Badrish, C. A.; Morchhale, A.; Kotkunde, N.; Singh, S. K. Experimental and Finite Element Studies of Springback Using Split-Ring Test for Inconel 625 Alloy. Adv. Mater. Process. Technol. 2020, 1 – 7. [Google Scholar]
  16. Ozturk, F.; Ece, R. E.; Polat, N.; Koksal, A. Effect of Warm Temperature on Springback Compensation of Titanium Sheet. Mater. Manuf. Processes. 2010, 25(9), 1021–1024. [Google Scholar]
  17. Neugebauer, R.; Altan, T.; Geiger, M.; Kleiner, M.; Sterzing, A. Sheet Metal Forming at Elevated Temperatures. CIRP Annals. 2006, 55(2), 793–816. [Google Scholar]
  18. Ma, B.; Liu, Z. G.; Jiang, Z.; Wu, X.; Diao, K.; Wan, M. Prediction of Forming Limit in DP590 Steel Sheet Forming: An Extended Fracture Criterion. Mater. Des. 2016, 96, 401–408. [Google Scholar]
  19. Shrivastava, A.; Telang, A.; Jha, A. K.; Ahmed, M. Experimental and Numerical Study on the Influence of Process Parameters in Electromagnetic Compression of AA6061 Tube. Mater. Manuf. Processes. 2019, 34(13), 1537–1548. [Google Scholar]
  20. Dewang, Y.; Panthi, S. K.; Hora, M. S. Binder Force Effect on Stretch Flange Forming of Aluminum Alloy. Mater. Manuf. Processes. 2019, 34(13), 1516–1527. [Google Scholar]
  21. Goodwin, G. M.;. Application of Strain Analysis to Sheet Metal Forming Problems in the Press Shop. SAE Tech. Pap. 1968, 60, 764–774. [Google Scholar]
  22. Keeler, S. P.;. Determination of Forming Limits in Automotive Stampings. SAE Tech. 1965, 42, 683–691. [Google Scholar]
  23. Hecker, S. S.;. Simple Technique for Determining Forming Limit Curves. Sheet Metal Indus. 1975, 52(11), 671–676. [Google Scholar]
  24. Nakazima, K.; Kikuma, T.; Hasuka, K. Study on the Formability of Steel Sheets. Yawata Tech Rep, Sept. 1968. 1968, 264, 8517–8530. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.