Open Access
Issue
E3S Web Conf.
Volume 309, 2021
3rd International Conference on Design and Manufacturing Aspects for Sustainable Energy (ICMED-ICMPC 2021)
Article Number 01218
Number of page(s) 6
DOI https://doi.org/10.1051/e3sconf/202130901218
Published online 07 October 2021
  1. S. Makridakis, E. Spiliotis, and V. Assimakopoulos, “Statistical and machine learning forecasting methods: Concerns and ways forward,” PloS one, vol. 13, no. 3, (2018). [Google Scholar]
  2. L. van der Hoek, K. Pyrc, M. F. Jebbink, W. Vermeulen-Oost, R. J. Berkhout, K. C. Wolthers, P. M. Wertheim-van Dillen, J. Kaandorp, J. Spaargaren, and B. Berkhout, “Identification of a new human coronavirus,” Nature medicine, vol. 10, no. 4, pp. 368–373, (2004). [Google Scholar]
  3. Dimitris Effrosynidis “Time Series Analysis with Theory, Plots, and Code Part 1” Apr 5, (2020) [online] https://towardsdatascience.com/time-series-analysis-with-theory-plots-and-code-part-1-dd3ea417d8c4 [Google Scholar]
  4. Bhanuka Dissanayake, “An introduction to time series, and basic concepts and modelling techniques related to time series analysis and forecasting”, Jul 14, 2020[online] https://towardsdatascience.com/introduction-to-time-series-forecasting-7e03c4bd83e0 [Google Scholar]
  5. F. Petropoulos and S. Makridakis, “Forecasting the novel coronavirus covid-19,” Plos one, vol. 15, no. 3, p. e0231236, (2020). [Google Scholar]
  6. Harry Kretchmer, “Key milestones in the spread of the coronavirus pandemic”, 22 Apr 2020 [online] https://www.weforum.org/agenda/2020/04/coronavirus-spread-covid19-pandemic-timeline-milestones/ [Google Scholar]
  7. WHO. Naming the coronavirus disease (covid-19) and the virus that causes it”. [Online]. Available: https://www.who.int/emergencies/diseases/novelcoronavirus-2019/technical-guidance/naming-the-coronavirus-disease- (covid-2019)-and-the-virus-that-causes-it [Google Scholar]
  8. World Health Organization. Coronavirus disease (COVID-19) advice for the public”.[Online]. Available:https://www.who.int/emergencies/diseases/novel-coronavirus-2019/advice-for-public [Google Scholar]
  9. Ezugwu, Absalom & Abaker, Ibrahim & Oyelade, Olaide & Chiroma, Haruna & Al-Garadi, Mohammed & Abdullahi, Idris & Otegbeye, Olumuyiwa & Shukla, Amit & Almutari, Mubarak, “A Novel Smart City Based Framework on Perspectives for application of Machine Learning in combatting COVID-19”, (2020): doi: 10.1101/2020.05.18.20105577. [Google Scholar]
  10. Zlatan Car, Sandi Baressi Šegota, Nikola Anđelić, Ivan Lorencin, Vedran Mrzljak, “Modeling the Spread of COVID-19 Infection Using a Multilayer Perceptron”, Computational and Mathematical Methods in Medicine, vol. 2020, Article ID 5714714, 10 pages, (2020). https://doi.org/10.1155/2020/5714714 [Google Scholar]
  11. Ahmed NK, Atiya AF, Gayar NE, El-Shishiny H. “An Empirical Comparison of Machine Learning Models for Time Series Forecasting. Econometric Reviews”, (2010); 29(5–6):594–621. https://doi.org/10.1080/07474938.2010.481556 [Google Scholar]
  12. Shinde, Gitanjali R et al. “Forecasting Models for Coronavirus Disease (COVID-19): A Survey of the State-of-the-Art.” SN computer science vol. 1, 4 (2020): 197. doi:10.1007/s42979-020-00209-9 [Google Scholar]
  13. Fong SJ, Li G, Dey N, Crespo RG Herrera-Viedma E. “Finding an accurate early forecasting model from small dataset: a case of 2019-ncov novel coronavirus outbreak”. arXiv preprint arXiv:2003.10776. (2020) [Google Scholar]
  14. Fong SJ, Li G, Dey N, Crespo RG, Herrera-Viedma E. “Composite monte carlo decision making under high uncertainty of novel coronavirus epidemic using hybridized deep learning and fuzzy rule induction”. Appl Soft Comput. (2020); 106282. [Google Scholar]
  15. Batista M. “Estimation of the final size of the second phase of the coronavirus COVID-19 epidemic by the logistic model”. 2020.03.11.20024901; doi: https://doi.org/10.1101/2020.03.11.20024901 [Google Scholar]
  16. Hu Z, Ge Q, Li S, Jin L, Xiong M. “Evaluating the effect of public health intervention on the global-wide spread trajectory of Covid-19”. medRxiv. (2020). [Google Scholar]
  17. Jia L, Li K, Jiang Y, Guo X. “Prediction and analysis of coronavirus disease 2019”. arXiv preprint https://arXiv:2003.05447. (2020). [Google Scholar]
  18. Kumar J, Hembram KPSS. “Epidemiological study of novel coronavirus (COVID-19)”. arXiv preprint https://arXiv:2003.11376. (2020). [Google Scholar]
  19. DeCaprio D, Gartner J, Burgess T, Kothari S, Sayed S. “Building a COVID-19 vulnerability index”. arXiv preprint https://arXiv:2003.07347. (2020). [Google Scholar]
  20. Toda AA. “Susceptible-infected-recovered (sir) dynamics of covid-19 and economic impact”. arXiv preprint arXiv:2003.11221. (2020). [Google Scholar]
  21. Teles P. “Predicting the evolution of SARS-Covid-2 in Portugal using an adapted SIR Model previously used in South Korea for the MERS outbreak”. arXiv preprint https://arXiv:2003.10047. (2020). [Google Scholar]
  22. Liu P, Beeler P, Chakrabarty RK. “COVID-19 progression timeline and effectiveness of response-to-spread interventions across the United States”. medRxiv. (2020). [Google Scholar]
  23. Rocha Filho TM, dos Santos FSG, Gomes VB, Rocha TA, Croda JH, Ramalho WM, Araujo WN “Expected impact of COVID-19 outbreak in a major metropolitan area in Brazil”. medRxiv.(2020). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.