Open Access
E3S Web Conf.
Volume 310, 2021
Annual International Scientific Conference “Spatial Data: Science, Research and Technology 2021”
Article Number 03001
Number of page(s) 7
Section Geodesy. Navigation. GLONASS - GNSS
Published online 15 October 2021
  1. K. Mostafa. On the suitability of generalized regression neural networks for GNSS position time series prediction for geodetic applications in geodesy and geophysics. arXiv preprint arXiv:2005.11106 (2020). [Google Scholar]
  2. P. D. Oluyori, M. N. Ono, S. O. Eteje. Computations of Geoid Undulation from Comparison of GNSS/Levelling with EGM 2008 for Geodetic Applications. International Journal of Scientific and Research Publications 8, 10, 235-241, (2018). [Google Scholar]
  3. M. Ge, G. Gendt, M. A. Rothacher, C. Shi, J. Liu. Resolution of GPS carrier-phase ambiguities in precise point positioning (PPP) with daily observations. Journal of geodesy, 82, 7, 389-399, (2008). [Google Scholar]
  4. Y. Gao, X. Shen. A New Method for Carrier‐Phase‐Based Precise Point Positioning. Navigation, 49, 2, 109-116, (2002). [Google Scholar]
  5. Applied Consumer Center GLONASS, Available via, Accessed on 17 August 2021. [Google Scholar]
  6. Constellation Information, Available via, Accessed on 19 August 2021. [Google Scholar]
  7. S. Mahato, A. Santra, S. Dan, P. Verma, P. Banerjee, A. Bose, Visibility anomaly of GNSS satellite and support from regional systems. Current Science, 119, 11, 1774-1782, (2020). DOI: 10.18520/cs/v119/i11/1774-1782 [Google Scholar]
  8. QZSS Satellite Information, Available via, Accessed on 17 August 2021. [Google Scholar]
  9. M. Goswami, S. Mahato, R. Ghatak, A. Bose, Potential of Multi Constellation GNSS in Indian Missile Test Range Applications. Defence Science Journal, 70, 6, 682-691, (2020). DOI: 10.14429/dsj.70.15570 [Google Scholar]
  10. Y. Mireault, P. Tétreault, F. Lahaye, P. Héroux, J. Kouba,. Online precise point positioning, GPS world, 19, 9, 59-64, (2008). [Google Scholar]
  11. AUSPOS, Australian Geoscience, Available via, Accessed on 28 August 2021. [Google Scholar]
  12. AUSPOS-How it works, Available via Accesed on 28 August 2021. [Google Scholar]
  13. Canadian Spatial Reference System Precise Point Positioning (CSRS-PPP), Geodetic tools and data, Available via, Accessed on 28 August 2021. [Google Scholar]
  14. N. AbouAly, M. Elhussien, M. Rabah, Z. Zidan, Assessment of NRCAN PPP online service in determination of crustal velocity: case study Northern Egypt GNSS Network. Arabian Journal of Geosciences, 14, 3, 1-15, (2021). [Google Scholar]
  15. A. Santra, A. Dutta, P. Banerjee, A. Bose, A Study on Multi-GNSS Precise Point Positioning from India, Proc. URSI GASS 2020, 29 August – 5 September 2020; Rome, (2020). [Google Scholar]
  16. ZED-F9P module, u-blox F9 high precision GNSS module, Available via, Accessed on 17 August 2021. [Google Scholar]
  17. ZED-F9P RTK GNSS receiver board with SMA Base or Rover, Available via, Accessed on 18 August 2021. [Google Scholar]
  18. NTL104 Dual antenna high performance OEM GNSS module with S-band support RTK/PPP INS, Available via, Accessed on 17 August 2021. [Google Scholar]
  19. ANN-MB1 L1/L5 multi-band high precision GNSS antenna, Available via, Accessed on 17 August 2021. [Google Scholar]
  20. RTKLib 2.4.3, Available via, Accessed on 13 october 2019. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.