Open Access
Issue |
E3S Web Conf.
Volume 312, 2021
76th Italian National Congress ATI (ATI 2021)
|
|
---|---|---|
Article Number | 05006 | |
Number of page(s) | 15 | |
Section | Hydraulics and Pneumatics | |
DOI | https://doi.org/10.1051/e3sconf/202131205006 | |
Published online | 22 October 2021 |
- A. I. Stankiewicz, J. A. Moulijn, et al., Process intensification: transforming chemical engineering, Chemical engineering progress 96, 22–34 (2000). [Google Scholar]
- A. Soulies, J. Pruvost, C. Castelain, T. Burghelea, Microscopic flowsof suspensions of the green non-motile chlorella micro-alga at variousvolume fractions: Applications to intensified photobioreactors, Journal of Non Newtonian Fluid Mechanics 231, 91–101. 17 (2016). [CrossRef] [Google Scholar]
- Y. Ke, W. Zhou, X. Chu, D. Yuan, S. Wan, W. Yu, Y. Liu, Porous copper fiber sintered felts with surface microchannels for methanol steam reforming microreactor for hydrogen production, International Journal of Hydrogen Energy 44, 5755–5765 (2019). [Google Scholar]
- T. Bandara, N.-T. Nguyen, G. Rosengarten, Slug flow heat transferwithout phase change in microchannels: A review, Chemical Engineer-ing Science 126, 283–295 (2015). [Google Scholar]
- M. Saadat, J. Yang, M. Dudek, G. Oye, P.A. Tsai, Microfluidic investigation of enhanced oil recovery: The effect of aqueous floods and network wettability, Journal of Petroleum Science and Engineering 203, 108647 (2021). [Google Scholar]
- A. Aquino, P. Poesio, Off-design exergy analysis of convective dryingusing a two-phase multispecies model, Energies 14, 223 (2021). [Google Scholar]
- E. Bonamente, A. Aquino, A. Nicolini, F. Cotana, Experimental analysis and process modeling of carbon dioxide removal using tuff, Sustainability 8, 1258 (2016). [Google Scholar]
- S. Kandlikar, S. Garimella, D. Li, S. Colin, M. R. King, Heat transferand fluid flow in minichannels and microchannels, Elsevier, 2005. [Google Scholar]
- D. J. Beebe, G. A. Mensing, G. M. Walker, Physics and applications of microfluidics in biology, Annual review of biomedical engineering 4, 261–286 (2002). [Google Scholar]
- A. D. Stroock, S. K. Dertinger, A. Ajdari, I. Mezic, H.A. Stone, G. Whitesides, Chaotic mixer for microchannels, Science 295, 647–651 (2002). [CrossRef] [PubMed] [Google Scholar]
- S. Wang, Z. Jiao, X. Huang, C. Yang, N. Nguyen, Acoustically inducedbubbles in a microfluidic channel for mixing enhancement, Microfluidicsand nanofluidics 6, 847–852 (2009). [Google Scholar]
- A.G. Unther, M. Jhunjhunwala, M. Thalmann, M.A. Schmidt, K.F. Jensen, Micromixing of miscible liquids in segmented gas-liquid flow, Langmuir 21, 1547–1555 (2005). [Google Scholar]
- A. R. Betz, D. Attinger, Can segmented flow enhance heat transfer in microchannel heat sinks?, International Journal of Heat and MassTransfer 53, 3683–3691 (2010). [Google Scholar]
- L. Zhao, K. Rezkallah, Gas-liquid flow patterns at microgravity condi-tions, International Journal of Multiphase Flow 19, 751–763 (1993). [Google Scholar]
- M. Suo, P. Griffith, Two-phase flow in capillary tubes (1964). [Google Scholar]
- M. T. Kreutzer, F. Kapteijn, J. A. Moulijn, J. J. Heiszwolf, Multiphasemonolith reactors: chemical reaction engineering of segmented flow inmicrochannels, Chemical Engineering Science 60, 5895–5916 (2005). [Google Scholar]
- F. Fairbrother, A. E. Stubbs, 119. studies in electro-endosmosis. partvi. the “bubble-tube” method of measurement, Journal of the Chemical Society (Resumed) 527–529 (1935). [CrossRef] [Google Scholar]
- G. Taylor, Deposition of a viscous fluid on the wall of a tube, Journal of fluid mechanics 10, 161–165 (1961). [Google Scholar]
- F. P. Bretherton, The motion of long bubbles in tubes, Journal of FluidMechanics 10, 166–188 (1961). [Google Scholar]
- J.R.H.-C. Chang, Transport of gas bubbles in capillaries, Phys. FluidsA 1, 1642 (1989). [Google Scholar]
- P. Aussillous, D. Qu er e, Quick deposition of a fluid on the wall of a tube, Physics of fluids 12, 2367–2371 (2000). [Google Scholar]
- M. Grad, C. Tsai, M. Yu, D. Kwong, C. Wong, D. Attinger, Transientsensing of liquid films in microfluidic channels with optofluidic microres-onators, Measurement Science and Technology 21, 075204 (2010). [Google Scholar]
- R. Chhabra, Fluid flow, heat, and mass transfer in non-newtonian fluids:multiphase systems, Advances in heat transfer, 23, 187–278 (1993). [Google Scholar]
- J. Hron, J. Malek, S. Turek, A numerical investigation of flows of shearthinning fluids with applications to blood rheology, International journal for numerical methods in fluids 32, 863–879. 19 (2000) [CrossRef] [Google Scholar]
- M. Guvendiren, H. D. Lu, J. A. Burdick, Shear-thinning hydrogels forbiomedical applications, Soft matter 8, 260–272 (2012). [CrossRef] [Google Scholar]
- J. Ara'ujo, J. Miranda, J. Campos, Taylor bubbles rising through flow-ing nonnewtonian inelastic fluids, Journal of Non-Newtonian FluidMechanics 245, 4966 (2017). [Google Scholar]
- D. Picchi, A. Ullmann, N. Brauner, P. Poesio, Motion of a confined bubble in a shear-thinning liquid, Journal of Fluid Mechanics 918, (2021). [Google Scholar]
- Q. Zhao, H. Ma, Y. Liu, C. Yao, L. Yang, G. Chen, Hydrodynamics and mass transfer of taylor bubbles flowing in non-newtonian fluids in a microchannel, Chemical Engineering Science 231, 116299 (2021). [Google Scholar]
- M. Dziubinski, H. Fidos, M. Sosno, The flow pattern map of a two-phase nonnewtonian liquid-gas flow in the vertical pipe, International journal of multiphase flow 30, 551–563 (2004). [Google Scholar]
- M. Laporte, A. Montillet, A. Belkadi, D. Della Valle, C. Loisel, A. Ri-Aublanc, J. Hauser, Investigation of gas/shear-thinning liquids flow at high throughput in microchannels with the aim of producing biosourced foam, Chemical Engineering and Processing-Process Intensification 148, 107787 (2020). [Google Scholar]
- C.-L. Sun, Y.J. Lin, C.-I. Rau, S.-Y. Chiu, Flow characterization andmixing performance of weakly-shear-thinning fluid flows in a microfluidicoscillator, Journal of Non-Newtonian Fluid Mechanics 239, 1–12 (2017). [Google Scholar]
- P. J. Carreau, Rheological equations from molecular network theories,Transactions of the Society of Rheology 16, 99–127 (1972). [Google Scholar]
- S. Matsuhisa, R. B. Bird, Analytical and numerical solutions for laminarflow of the non-newtonian ellis fluid, AIChE Journal 11, 588–595 (1965). [Google Scholar]
- S. G. Sontti, A. Atta, Cfd study on taylor bubble characteristics in carreau-yasuda shear thinning liquids, The Canadian Journal of Chemical Engineering 97, 616–624 (2019). [Google Scholar]
- A. I. Moreira, L. A. Rocha, J. Carneiro, J. D. Araujo, J.B. Campos, J.M. Miranda, Isolated taylor bubbles in co-current with shear thinnin gcmc solutions in microchannels—a numerical study, Processes 8, 242.20 (2020). [CrossRef] [Google Scholar]
- W. Y. Fan, S. C. Li, L. X. Li, X. Zhang, M. Q. Du, X. H. Yin, Hydrodynamics of gas/shear-thinning liquid two-phase flow in a co-flow mini-channel: Flow pattern and bubble length, Physics of Fluids 32, 092004 (2020). [Google Scholar]
- T. Fu, L. Wei, C. Zhu, Y. Ma, Flow patterns of liquid-liquid two-phase flow in non-newtonian fluids in rectangular microchannels, Chemical Engineering and Processing: Process Intensification 91, 114–120 (2015). [Google Scholar]
- V.-L. Wong, K. Loizou, P.-L. Lau, R. S. Graham, B. N. Hewakandamby, Characterizing droplet breakup rates of shear-thinning dispersed phase in microreactors, Chemical Engineering Research and Design 144, 370–385 (2019). [CrossRef] [Google Scholar]
- B. Rostami, G. L. Morini, Generation of newtonian and non-newtonian droplets in silicone oil flow by means of a micro cross-junction, International Journal of Multiphase Flow 105, 202–216 (2018). [Google Scholar]
- D. Picchi, P. Poesio, A. Ullmann, N. Brauner, Characteristics of stratified flows of newtonian/non-newtonian shear-thinning fluids, International Journal of Multiphase Flow 97, 109–133 (2017). [Google Scholar]
- A. Hoang, Breakup of confined droplets in microfluidics (2013). [Google Scholar]
- D. Hoang, V. Van Steijn, L. Portela, M. Kreutzer, C. Kleijn, Modeling of low- capillary number segmented flows in microchannels using openfoam, in: AIP Conference Proceedings, American Institute of Physics, 1479, 86–89. [Google Scholar]
- C. K. Batchelor, G. Batchelor, An introduction to fluid dynamics, Cambridge university press, 2000. [Google Scholar]
- B. Van Leer, Towards the ultimate conservative difference scheme.ii. monotonicity and conservation combined in a second-order scheme, Journal of computational physics 14, 361–370 (1974). [Google Scholar]
- H. G. Weller, A new approach to vof-based interface capturing meth-ods for incompressible and compressible flow, OpenCFD Ltd., ReportTR/HGW 4, 35.21 (2008). [Google Scholar]
- S. S. Deshpande, L. Anumolu, M. F. Trujillo, Evaluating the perfor-mance of the two-phase flow solver interfoam, Computational science & discovery 5, 014016 (2012). [Google Scholar]
- S. Khodaparast, M. Magnini, N. Borhani, J. R. Thome, Dynamics of isolated confined air bubbles in liquid flows through circular microchannels: an experimental and numerical study, Microfluidics and Nanofluidics 19, 209–234 (2015). [Google Scholar]
- G. Balestra, L. Zhu, F. Gallaire, Viscous taylor droplets in axisymmetric and planar tubes: from bretherton’s theory to empirical models, Microfluidics and Nanofluidics 22, 1–27 (2018). [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.