Open Access
Issue
E3S Web Conf.
Volume 312, 2021
76th Italian National Congress ATI (ATI 2021)
Article Number 05005
Number of page(s) 11
Section Hydraulics and Pneumatics
DOI https://doi.org/10.1051/e3sconf/202131205005
Published online 22 October 2021
  1. Rossetti A., Macor A., Scamperle M., Optimization of components and layouts of hydromechanical transmissions, International Journal of Fluid Power, Vol. 18, Issue 2, Pages 123–134. (2017) DOI: 10.1080/14399776.2017.1296746. [Google Scholar]
  2. Rossetti A., Macor A., Benato A., Impact of control strategies on the emissions in a city bus equipped with powersplit transmission, Transportation Research Part D: Transport and Environment, Vol. 50, Pages 357–371. (2017) DOI: 10.1016/j.trd.2016.11.025. [Google Scholar]
  3. Casoli, P., Pompini, N., Riccô, L., Simulation of an Excavator Hydraulic System Using Nonlinear Mathematical Models, Strojniski vestnik - Journal of Mechanical Engineering 61, 10, 583–593. (2015) DOI: 10.5545/sv-jme.2015.2570 [Google Scholar]
  4. Gaiola, A., Zardin, B., Casoli, P., Borghi, M., Mazzali, F., Pintore, F., Fiorati, S., The Hydraulic Power Generation and Transmission on Agricultural Tractors: feasible architectures to reduce dissipation and fuel consumption - Part I, E3S Web Conf. 197 07009 (2020), DOI: 10.1051/e3sconf/2020197070. [Google Scholar]
  5. Casoli, P., Zardin, B., Ardizio, S., Borghi, M., Pintore, F., Mesturini, D., The Hydraulic Power Generation and Transmis sion on Agricultural Tractors: feasible architectures to reduce dis sipation and fuel consumption - Part 2, E3S Web Conf. 197 07010 (2020) [Google Scholar]
  6. Zardin, B., Borghi, M., Cillo, G., Rinaldini, C.A., Mattarelli, E., Design Of Two-Stage On/Off Cartridge Valves For Mobile Applications, Energy Procedía, Volume 126, 2017, Pages 1123–1130, (2017). ISSN 1876-6102. [Google Scholar]
  7. Zardin, B., Cillo, G., Borghi, M., D’Adamo, A., Fontanesi, S., Pressure Losses in Multiple-Elbow Paths and in V-Bends of Hydraulic Manifolds. Energies 2017, 10, 788. (2017). [Google Scholar]
  8. Senatore, A., Buono, D., Frosina, E., Pavanetto, M., Costin, I., Olivetti, M., Improving the performance of a two way control valve using a 3D CFD modeling, Proceedings of the ASME International Mechanical Engineering Congress and Exposition, (IMECE), 7, Montreal, Canada, DOI doi: 10.1115/IMECE2014-3820, (2014). [Google Scholar]
  9. Zardin, B., Natali, E., Borghi, M., Evaluation of the Hydro—Mechanical Efficiency of External Gear Pumps. Energies 2019, 12, 2468. https://doi.org/10.3390/en12132468. (2019). [Google Scholar]
  10. Thiagarajan, D., Vacca, A., Investigation of Hydro-Mechanical Losses in External Gear Machines: Simulation and Experimental Validation. In Proceedings of the BATH/ASME 2016 Symposium on FluidPower andMotion Control, Bath, UK, 7-9 September 2016; p. V001T01A015. (2016). [Google Scholar]
  11. Michael, P., Khalid, H., Wanke, T., An Investigation of External Gear Pump Efficiency and Stribeck Values, SAE Technical Paper: No. 2012-01-2041; SAE International: Chicago, IL, USA, (2012). [Google Scholar]
  12. Casoli, P., Pastori, M., Scolari, F., Rundo, M., Active pressure ripple control in axial piston pumps through high-frequency swash plate oscillations - A theoretical analysis, Energies, 12 (7), art. no. 1377, DOI: 10.3390/en12071377. (2019). [Google Scholar]
  13. Marinaro, G., Frosina, E., Senatore, A., A Numerical Analysis of an Innovative Flow Ripple Reduction Method for External Gear Pumps, Energies 2021, 14(2), 471, (2021). [Google Scholar]
  14. Siano, D., Frosina, E., Senatore, A., Diagnostic Process by Using Vibrational Sensors for Monitoring Cavitation Phenomena in a Getoror Pump Used for Automotive Applications, Energy Procedia, 126, 1 September 2017, Pages 1115–112. (2017). [Google Scholar]
  15. Casoli, P., Pastori, M., Scolari, F., Rundo, M., A vibration signal-based method for fault identification and classification in hydraulic axial piston pumps, Energies, 12 (5), art. no. 953, DOI: 10.3390/en12050953. (2019). [Google Scholar]
  16. Shah, Y.G., Vacca, A., Dabiri, S., Frosina, E., A fast lumped parameter approach for the prediction ofboth aeration and cavitation in Gerotor pumps, Meccanica, 53(1-2), Pages 175–191, (2018). [Google Scholar]
  17. Mancó, S., Nervegna, N., Rundo, M., and Armenio, G. Modelling and Simulation of Variable Displacement Vane Pumps for IC Engine Lubrication, SAE Technical Paper 2004-01-1601, https://doi.org/10.4271/2004-01-1601. (2005). [Google Scholar]
  18. Rundo, M., Pavanetto, M.A., Comprehensive Simulation Model of a High Pressure Variable Displacement Vane Pump for Industrial Applications., Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Volume 1A. Quebec, Canada. V01AT02A002. ASME. https://doi.org/10.1115/DETC2018-85099. (2018). [Google Scholar]
  19. Rundo, M., Altare, G., Lumped Parameter and Three-Dimensional Computational Fluid Dynamics Simulation of a Variable Displacement Vane Pump for Engine Lubrication., ASME. J. Fluids Eng.; 140(6): 061101. https://doi.org/10.1115Z1.4038761. (2018). [Google Scholar]
  20. Cantore, G., Milani, M., Paltrinieri, F., Tosetti, F., Lumped Parameters Numerical Simulation of a Variable Displacement Vane Pump for High Speed ICE Lubrication, SAE Technical Paper 2008-01-2445, (2008). [Google Scholar]
  21. F. Fornarelli, A. Lippolis, P. Oresta, A. Posa, Investigation of a pressure compensated vane pump, Energy Procedía, Volume 148, Pages 194–201, ISSN 1876-6102, https://doi.org/10.1016/i.egypro.2018.08.068. (2018). [Google Scholar]
  22. Rundo, M., and Nervegna, N., Geometry Assessment ofVariable Displacement Vane Pumps., ASME. J. Dyn. Sys., Meas., Control.; 129(4): 446–455. (2007) [Google Scholar]
  23. Rundo M., Piloted Displacement Controls for ICE Lubricating Vane Pumps, SAE Int. J. Fuels Lubr. 2(2):176–184, https://doi.org/10.4271/2009-01-2758. (2010). [Google Scholar]
  24. Tiller, M., Introduction to Physical Modeling with Modelica, The Springer International Series in Engineering and Computer Science book series (SECS), Volume 615, ISBN : 978-1-4613-5615-8. (2001). [Google Scholar]
  25. https://www.openmodelica.org/, last access June 24th, 2021. [Google Scholar]
  26. https://smart.fluidpower.it/, last access June 24th, 2021. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.