Open Access
Issue
E3S Web Conf.
Volume 312, 2021
76th Italian National Congress ATI (ATI 2021)
Article Number 08009
Number of page(s) 14
Section Systems for Sustainable Energy Generation
DOI https://doi.org/10.1051/e3sconf/202131208009
Published online 22 October 2021
  1. A.M. Gambelli, B. Castellani, A. Nicolini, F. Rossi. Experimental study on natural gas hydrate exploitation: Optimization of methane recovery, carbon dioxide storage and deposit structure preservation. J. Petrol. Sci. Eng., 177 (2019) 594–601. [Google Scholar]
  2. T. Collett. Energy resource potential of natural gas hydrates. AAPG Bull, 86 (2002) 1971–1992. [Google Scholar]
  3. E.D. Sloan, C.A. Koh. Clathrate hydrates of natural gases. third ed. Boca Raton, FL, USA: CRC Press; 2007. [Google Scholar]
  4. F. Rossi, A.M. Gambelli. Thermodynamic phase equilibrium of single-guest hydrate and formation data of hydrate in presence of chemical additives: a review. Fluid Phase Equilib., 536 (2021) 112958. [Google Scholar]
  5. K. Ohgaki, Y. Inoue. A proposal for gas-storage on the ocean-floor using gas hydrates. Kagaku Kogaku Ronbun, 17 (1991) 1053–1055. [Google Scholar]
  6. C. Cranganu. A method for producing natural gas from gas hydrate deposits. In: Proceedings of the AAPG annual convention; 2005. [Google Scholar]
  7. A.M. Gambelli, M. Filipponi, F. Rossi. How methane release may affect carbon dioxide storage during replacement processes in natural gas hydrate reservoirs. J. Petrol. Sci. Eng., 205 (2021) 108895, https://doi.org/10.1016Zi.pettol.2021.108895 [Google Scholar]
  8. N. Goel. In situ methane hydrate dissociation with carbon dioxide sequestration: current knowledge and issues. J. Petrol. Sci. Eng., 51 (2006) 169–184. [Google Scholar]
  9. Y. Seo, S. Lee, J. Lee. Experimental verification of methane replacement in gas hydrates by carbon dioxide. Chem. Eng. Trans., 32 (2013) 163–168. [Google Scholar]
  10. C. Deusner, N. Bigalke, E. Kossel, M. Haeckel. Methane production from gas hydrate deposits through injection of supercritical CO2. Energies, 5 (2012) 2112–2140. [Google Scholar]
  11. D.Y. Koh, H. Kang, D.O. Kim, J. Park, M. Cha, H. Lee. Recovery of methane from gas hydrates intercalated within natural sediments using CO2and a CO2/N2gasmixture. ChemSusChem, 5 (2012) 1443–1448. [Google Scholar]
  12. A.M. Gambelli. Natural gas recovery from hydrate compounds using CO2 replacement strategies: experimental study on thermal stimulation. Energy Procedia, 148 (2018) 647–654. [Google Scholar]
  13. D.K. Sharma, M. Filipponi, A. Di Schino, F. Rossi, M.J. Castaldi. Corrosion behaviour of high temperature fuel cells: Issues for materials selection. Metalurgija, 58 (2019) 347–351. [Google Scholar]
  14. A.M. Gambelli, U. Tinivella, R. Giovannetti, B. Castellani, M. Giustiniani, A. Rossi, M. Zannotti, F. Rossi. Observation of the Main Parameters Influencing the Formation of Gas Hydrates. Energies, 14 (2021) 1803. [Google Scholar]
  15. L. Li, J. Zhao, L. Zhang, S. Fan, Q. Li, W. Pang, X. Lu, L. Zheng, N. Wei. A novel fitted thermodynamic model for the capture of CO2 from flue gas by the hydrate method. Natural Gas Industry B, 6 (2019) 603–609. [Google Scholar]
  16. L. Li, S. Fan, G. Yang, Q. Chen, J. Zhao, N. Wei, W. Meng, J. Fan, H. Yang. Continuous simulation of the separation process of CO2/H2 by forming hydrate. Chem. Eng. Sci.: X, 7 (2020) 100067. [Google Scholar]
  17. A.M. Gambelli, B. Castellani, A. Nicolini, F. Rossi. Water Salinity as Potential Aid for Improving the Carbon Dioxide Replacement Process’ Effectiveness in Natural Gas Hydrate Reservoirs. Processes, 8 (2020) 1298. [Google Scholar]
  18. A.M. Gambelli. An experimental description of the double positive effect of CO2 injection in methane hydrate deposits in terms of climate change mitigation. Chem. Eng. Sci., 233 (2021) 116430. [Google Scholar]
  19. B. Castellani, A.M. Gambelli, A. Nicolini, F. Rossi. Energy and Environmental Analysis of Membrane-Based CH4-CO2 Replacement Processes in Natural Gas Hydrates. Energies, 12 (2019) 850. [Google Scholar]
  20. A.M. Gambelli, F. Rossi. Natural gas hydrates: Comparison between two different applications of thermal stimulation for performing CO2 replacement. Energy, 172 (2019) 423–434. [Google Scholar]
  21. A.G. Aregba. Gas Hydrate—Properties, Formation and Benefits. Open Journal of Yangtze Gas and Oil, 2 (2017) 27–44. https://doi.org/10.4236/ojogas.2017.21003 [Google Scholar]
  22. D. Sadeq, S. Iglauer, M. Lebedev, C. Smith, A. Barifcani. Experimental determination of hydrate phase equilibrium for different gas mixtures containing methane, carbon dioxide and nitrogen with motor current measurements. J. Nat. Gas Sci. Eng., 38 (2017) 59–73. [Google Scholar]
  23. S. Shicai, Z. Yong, L. Changling, L. Yufeng. Preliminary study on measurement technology for hydrate phase equilibrium. Fluid Phase Equilib., 403 (2015) 60–69. [Google Scholar]
  24. A. Jarrahian, A. Nakhaee. Hydrate-liquid-vapor equilibrium condition for N2 + CO2 + H2O system: Measurement and modelling. Fuel, 237 (2019) 769–774. [Google Scholar]
  25. V. Belandria, A.H. Mohammadi, A. Eslamimanesh, D. Richon, M.F. Sànchez-Mora, L.A. Galicia-Luna. Phase equilibrium measurements for semi-clathrate hydrates of the (CO2 + N2 + tetra-n-butylammonium bromide) aqueous solution systems: Part 2. Fluid Phase Equilib., 322-323 (2012) 102–112. [Google Scholar]
  26. S.M. Kim, J.D. Lee, H.J. Lee, E.K. Lee, Y. Kim. Gas hydrate formation method to capture the carbon dioxide for pre-combustion process in IGCC plant. Int. J. Hydrog. Energy, 36 (2011) 1115–1121. [Google Scholar]
  27. S.C. Sun, C.L. Liu, Q.G. Meng. Hydrate phase equilibrium of binary guest-mixtures containing CO2 and N2 in various system. J. Chem. Thermodyn., 84 (2015) 1–6. [Google Scholar]
  28. A.M. Gambelli, A. Presciutti, F. Rossi. Review on the characteristics and advantages related to the use of flue-gas as CO2/N2 mixture for gas hydrate production. Fluid Phase Equilib., 541 (2021) 113077, doi: https://doi.org/10.1016zj.fluid.2021.113077 [Google Scholar]
  29. X. Zang, L. Wan, D. Liang. Investigation of the hydrate formation process in fine sediments by a binary CO2/N2 gas mixture. Chin. J. Chem. Eng., 27 (2019) 2157–2163. [Google Scholar]
  30. H. Bruusgaard, J.G. Beltràn, P. Servio. Solubility measurements for the CH4 + CO2 + H2O system under hydrate-liquid-vapor equilibrium. Fluid Phase Equilib., 296 (2010) 106–109. [Google Scholar]
  31. I.B.A. Sfaxi, I. Durand, R. Lugo, A.H. Mohammadi, D. Richon. Hydrate phase equilibria of CO2+N2+aqueous solution of THF, TBAB or TBAF system. Int. J. Greenh. Gas Con., 26 (2014) 185–192. [Google Scholar]
  32. V. Sh. Shagapov, M.K. Khasanov, N.G. Musakaev, Ngoc Hai Duong. Theoretical research of the gas hydrate deposits development using the injection of carbon dioxide. Int. J. Heat Mass Transf., 107 (2017) 347–357. [Google Scholar]
  33. A.M. Gambelli, F. Rossi. The use of sodium chloride as strategy for improving CO2/CH4 replacement in natural gas hydrates promoted with depressurization methods. Arab. J. Geosci., 13 (2020) 898. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.