Open Access
E3S Web Conf.
Volume 312, 2021
76th Italian National Congress ATI (ATI 2021)
Article Number 08019
Number of page(s) 20
Section Systems for Sustainable Energy Generation
Published online 22 October 2021
  1. IEA, World Energy Outlook 2017 [Google Scholar]
  2. European Commission, COM (2015) 80, Communication from the commission to the European parliament, the council, the european economic and social committee, the committee of the regions and the European investment bank, A Framework Strategy for a Resilient Energy Union with a Forward-Looking Climate Change Policy, [Accessed: 2-June-2020] [Google Scholar]
  3. IEA, World Energy Outlook 2018. [Google Scholar]
  4. EUROSTAT, Electricity production capacities for combustible fuels by technology and operator, [Google Scholar]
  5. TERNA & SNAM; Documento di descrizione degli scenari 2019, [Google Scholar]
  6. Global Power Plant Database, [Google Scholar]
  7. Zerobin, F., Penthor, S., Bertsch, O., Pröll, T., Fluidized bed reactor design study for pressurized chemical looping combustion of natural gas, Powder Technology, Vol. 316, pp. 569–577, 2017 [Google Scholar]
  8. Eret, P., A cost-effective compressed air generation for manufacturing using modified microturbines, Applied Thermal Engineering, Vol. 107, pp. 311–319, 2016. [Google Scholar]
  10. Khan, M.N., Chiesa, P., Cloete, S., Aminia, S., Integration of chemical looping combustion for cost-effective CO2 capture from state-of-the-art natural gas combined cycles, Energy Conversion and Management, in print, 2020. [Google Scholar]
  11. Fan, J., Hong, H., Jin, H., Power Generation Based on Chemical Looping Combustion: Will It Qualify To Reduce Greenhouse Gas Emissions from Life-Cycle Assessment? ACS Sustainable Chem. Eng., Vol. 6, pp. 6730–6737, 2018. [Google Scholar]
  12. Singh, B., Stromman, A.H., Hertwich, E.G., Comparative life cycle environmental assessment of CCS technologies, International Journal of Greenhouse Gas Control, Vol. 5, pp. 911–921, 2011. [Google Scholar]
  13. Dillion, D.J., Panesar, R.S., Wall, R.A., Allam, R.J., White, V., Gibbins, J., Haines, M.R., Oxy-combustion processes for CO2 capture from advanced supercritical PF and NGCC power plant. In: Proceedings of 7th International Conference on Greenhouse Gas Control Technologies. Volume 1: Peer Reviewed Papers and Overviews, Elsevier Science, Oxford, U.K., pp. 211–220. 2005. [Google Scholar]
  14. Chiesa, P., Lozza, G., Mazzocchi, L., Using Hydrogen as Gas Turbine Fuel, Journal of Engineering for Gas Turbines and Power, Vol. 127, pp. 73–80, 2005. [Google Scholar]
  15. MHPS, Hydrogen power generation handbook, [Google Scholar]
  16. Fusina combined cycle project: planning to run on pure hydrogen, [Google Scholar]
  17. [Google Scholar]
  18. European Turbine Network (ETN), Hydrogen Gas Turbine report, January 2020, [Google Scholar]
  19. MISE, MATTM. Strategia Energetica Nazionale. SEN; 2017. [Google Scholar]
  20. MISE, Proposta di Piano Nazionale Integrato per Energia e il Clima, 2018 [Google Scholar]
  21. ENEA, Il modello energetico TIMES-Italia, 2011, [Google Scholar]
  22. Mathiesen B.V., Lund H., Connolly D., et al. “Smart Energy Systems for coherent 100% renewable energy and transport solutions.” Applied Energy (145): 139–154. 2015 [Google Scholar]
  23. Connolly, D., Hansen, K., Drysdale, D., Lund, H., Mathiesen, B.V., Werner, S., Persson, U., Möller, B., Wilke, O.G., Bettgenhäuser, K., Pouwels, W., Boermans, T., Novosel, T., Krajacic, G., Duic, N., Trier, D., Moller, D., Odgaard, A.M., Jensen, L.L. (Heat Roadmap Europe 3 and STRATEGO WP2 Main Report) Enhanced Heating and Cooling Plans to Quantify the Impact of Increased Energy Efficiency in EU Member States: Translating the Heat Roadmap Europe Methodology to Member State Level. Aalborg University, Halmstad University, University of Flensburg, Ecofys, University of Zagreb, and PlanEnergi, 2015. Available from: [Google Scholar]
  24. [Google Scholar]
  25. Skone, T.J., Schivley, G., Jamieson, M., Marriott, J., Cooney, G., Littlefield, J., Mutchek, M., Krynock, M., Shih, C., LIFE CYCLE ANALYSIS: NATURAL GAS COMBINED CYCLE (NGCC) POWER PLANTS, DOE Contract Number DE-FE0025912, 2018 [Google Scholar]
  26. Mehmeti, A., Angelis-Dimakis, A., Arampatzis, G., McPhail, S.J., Ulgiati, S., Life Cycle Assessment and Water Footprint of Hydrogen Production Methods: From Conventional to Emerging Technologies, Environments, Vol. 5, 10; 2018 [Google Scholar]
  27. Oshima K., Uchiyama, Y., Performance and Economic Study of Oxy-fuel Gas Turbine Power Plant Utilizing Nuclear Steam Generator, Journal of Energy and Power Engineering, Volume 4, No.8 (Serial No.33), ISSN 1934-8975, 2010. [Google Scholar]
  28. Ditaranto, M. 5th Meeting of the IEAGHG International OxyfuelCombustion Research Network, presentation, Wuhan, China, 2015 [Google Scholar]
  29. Riccardo Maddalena, Jennifer J. Roberts, Andrea Hamilton, Can Portland cement be replaced by low-carbon alternative materials? A study on the thermal properties and carbon emissions of innovative cements, Journal of Cleaner Production, Volume 186, 933–942, 2018. [Google Scholar]
  31. Tukker, A., A. de Koning, R. Wood, T. Hawkins, S. Lutter, J. Acosta, J.M. Rueda Cantuche, M. Bouwmeester, J. Oosterhaven, T. Drosdowski, J. Kuenen (2013) EXIOPOL - Development and illustrative analyses of a detailed global mr ee sut/iot. Economic Systems Research, 25(1)50–70. doi: 10.1080/09535314.2012.761952 [Google Scholar]
  32. Wood, R., K. Stadler, T. Bulavskaya, S. Lutter, S. Giljum, A. de Koning, J. Kuenen, H. Schütz, J. Acosta-Fernandez, A. Usubiaga, M. Simas, O. Ivanova, J. Weinzettel, J.H. Schmidt, S. Merciai, A. Tukker (2015) Global sustainability accounting-developing EXIOBASE for multi-regional footprint analysis. Sustainability, 7(1)138–163. doi: 10.3390/su7010138 [Google Scholar]
  33. Stadler K., R. Wood, T. Bulavskaya, C.J. Sodersten, M. Simas, S. Schmidt, A. Usubiaga, J. Acosta-Fernandez, J. Kuenen, M. Bruckner, S. Giljum, S. Lutter, S. Merciai, J.H. Schmidt, M.C. Theurl, C. Plutzar, T. Kastner, M. Eisenmenger, K. Erb, A. de Koning, A. Tukker (2018) EXIOBASE 3: Developing a Time Series of Detailed Environmentally Extended Multi-Regional Input-Output Tables, Journal of Industrial Ecology 22(3)502–515. doi: 10.1111/jiec.12715 [Google Scholar]
  34. Merciai, S. and J. Schmidt (2018) Methodology for the Construction of Global MultiRegional Hybrid Supply and Use Tables for the EXIOBASE v3 Database. Journal of Industrial Ecology, 22(3)516–531. doi: 10.1111/jiec.12713 [Google Scholar]
  35. Hoekstra, R. and J.C.J.M. van den Bergh. 2006. Constructing physical input-output tables for environmental modeling and accounting: Framework and illustrations. Ecological Economics 59(3): 375–393. [Google Scholar]
  36. SEEA (System of Environmental-Economic Accounting). 2012. System of Environmental-Economic Accounting: A central framework. European Commission, International Monetary Funds, Food and Agriculture Organization of the United Nation, Organisation for Economic Co-operation and Development, United Nations, and World Bank. White cover publication. Accessed 29 September 2016. [Google Scholar]
  37. WNA, Comparison of Lifecycle Greenhouse Gas Emissions of Various Electricity Generation Sources, [Google Scholar]
  38. Zhao, Z., Chen, T., Ghoniem, A.F., Rotary Bed Reactor for Chemical-Looping Combustion with Carbon Capture. Part 1: Reactor Design and Model Development, Energy Fuels, 27, 327–343. 2013 [Google Scholar]
  40. Schjolset, S., The MSR: Impact on market balance and price, [Google Scholar]
  41. Fernandes, D.; Wang, S.; Xu, Q.; Buss, R.; Chen, D. Process and Carbon Footprint Analyses of the Allam Cycle Power Plant Integrated with an Air Separation Unit. Clean Technol. 1, 325–340. 2019 [Google Scholar]
  42. Zampilli, M., Bidini, G., Laranci, P., D'Amico, M., Bartocci, P., Fantozzi, F., Biomass microturbine based EFGT and IPRP cycles: Environmental impact analysis and comparison, Proceedings of the ASME Turbo Expo, 3. 2017. [Google Scholar]
  43. The Parliamentary Office of Science and Technology, Carbon Footprint of Electricity Generation, Post note update 2011. [Google Scholar]
  44. Smoucha, E.A., Fitzpatrick, K., Buckingham, S., Knox, O.G.G., Life Cycle Analysis of the Embodied Carbon Emissions from 14 Wind Turbines with Rated Powers between 50 kW and 3.4 kW, J Fundam Renewable Energy Appl, 6:4, 2016. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.