Open Access
E3S Web Conf.
Volume 312, 2021
76th Italian National Congress ATI (ATI 2021)
Article Number 11005
Number of page(s) 16
Section Turbomachinery
Published online 22 October 2021
  1. Krein, A., & Williams, G. (2012). Flightpath 2050: Europe’s vision for aeronautics. Innovation for Sustainable Aviation in a Global Environment: Proceedings of the Sixth European Aeronautics Days, Madrid, 30. [Google Scholar]
  2. Liu, Y., Sun, X., Sethi, V., Nalianda, D., Li, Y.G., & Wang, L. (2017). Review of modern low emissions combustion technologies for aero gas turbine engines. Progress in Aerospace Sciences, 94, 12–45. [Google Scholar]
  3. National Academies of Sciences, Engineering, and Medicine. (2016). Commercial aircraft propulsion and energy systems research: reducing global carbon emissions. National Academies Press.F. De Lillo, F. Cecconi, G. Lacorata, A. Vulpiani, EPL, 84 (2008) [Google Scholar]
  4. Gohardani, A.S., Doulgeris, G., & Singh, R. (2011). Challenges of future aircraft propulsion: A review of distributed propulsion technology and its potential application for the all electric commercial aircraft. Progress in Aerospace Sciences, 47(5), 369–391. [Google Scholar]
  5. Hepperle, M. (2012). Electric flight-potential and limitations. [Google Scholar]
  6. Zhang, X., Bowman, C.L., O'Connell, T.C., & Haran, K.S. (2018). Large electric machines for aircraft electric propulsion. IET Electric Power Applications, 12(6), 767–779. [Google Scholar]
  7. Zhang, X., & Haran, K.S. (2016, September). High-specific-power electric machines for electrified transportation applications-technology options. In 2016 IEEE Energy Conversion Congress and Exposition (ECCE) (pp. 1–8). IEEE. [Google Scholar]
  8. Driscoll, D.I. (2001, January). A review of superconducting motor technology development. In 2001 IEEE Power Engineering Society Winter Meeting. Conference Proceedings (Cat. No. 01CH37194) (Vol. 2, pp. 438–441). IEEE. [Google Scholar]
  9. Jansen, R., Bowman, C., Jankovsky, A., Dyson, R., & Felder, J. (2017). Overview of NASA electrified aircraft propulsion (EAP) research for large subsonic transports. In 53rd AIAA/SAE/ASEE Joint Propulsion Conference (p. 4701). [Google Scholar]
  10. Wroblewski, G.E., & Ansell, P.J. (2019). Mission analysis and emissions for conventional and hybrid-electric commercial transport aircraft. Journal of Aircraft, 56(3), 1200–1213. [Google Scholar]
  11. Aigner, B., Stumpf, E., Hinz, A., & De Doncker, R.W. (2020). An Integrated Design Framework for Aircraft with Hybrid Electric Propulsion. In AIAA Scitech 2020 Forum (p. 1501). [Google Scholar]
  12. Vratny, Patrick C., et al. “Battery pack modeling methods for universally-electric aircraft.” 4th CEAS Air & Space Conference. Linköping, Sweden: Linköping University Electronic Press, 2013. [Google Scholar]
  13. Isikveren, A.T., Seitz, A., Vratny, P.C., Pornet, C., Plötner, K.O., & Hornung, M. (2012, September). Conceptual studies of universally-electric systems architectures suitable for transport aircraft. In Deutscher Luft-und Raumfahrt Kongress. Berlin: DLRK. [Google Scholar]
  14. Hornung, Mirko, et al. “Ce-liner-case study for emobility in air transportation.” 2013 Aviation Technology, Integration, and Operations Conference. 2013. [Google Scholar]
  15. Avanzini, G., de Angelis, E.L., & Giulietti, F. (2016). Optimal performance and sizing of a battery-powered aircraft. Aerospace Science and Technology, 59, 132–144. [Google Scholar]
  16. Carcasci, C., Marini, L., Morini, B., & Porcelli, M. (2016). A new modular procedure for industrial plant simulations and its reliable implementation. Energy, 94, 380–390. [Google Scholar]
  17. Poggiali, M., Gamannossi, A., Langone, L., & Amerini, A. (2019, December). Civil aero-engine performance prediction using a low-order code and uncertainty quantification estimation. In AIP Conference Proceedings (Vol. 2191, No. 1, p. 020130). [Google Scholar]
  18. Gamannossi, A., Bertini, D., Adolfo, D., & Carcasci, C. (2017). Analysis of the GT26 single-shaft gas turbine performance and emissions. Energy Procedia, 126, 461–468. [Google Scholar]
  19. ICAO Engine Emissions Databank, 2017. Available in Electronic Format from the EASA website. [Google Scholar]
  20. Rolls-Royce AE 2100 datasheet: [Google Scholar]
  21. Pyrhonen, J., Jokinen, T., & Hrabovcova, V. (2013). Design of rotating electrical machines. John Wiley & Sons. [Google Scholar]
  22. Rucker, J.E., Kirtley, J.L., & McCoy, T.J. (2005, July). Design and analysis of a permanent magnet generator for naval applications. In IEEE Electric Ship Technologies Symposium, 2005. (pp. 451–458). IEEE. [Google Scholar]
  23. Vratny, P.C., Forsbach, P., Seitz, A., & Hornung, M. (2014, September). Investigation of universally electric propulsion systems for transport aircraft. In 29th Congress of the International Council of the Aeronautical Sciences (pp. 1–13). [Google Scholar]
  24. Kuhn, H., & Sizmann, A. (2012). Fundamental prerequisites for electric flying. [Google Scholar]
  25. Sun, J., Hoekstra, J.M., & Ellerbroek, J. (2018). Aircraft drag polar estimation based on a stochastic hierarchical model. In 8th International Conference on Research in Air Transportation. [Google Scholar]
  26. Flight Aware Live flight tracking: [Google Scholar]
  27. Embraer E190 datasheet: [Google Scholar]
  28. Secretariat, I.C.A.O. (2019). Electric, hybrid, and hydrogen aircraft-state of play. Climate Change Mitigation: Technology and Operations, 124–130. [Google Scholar]
  29. GE CF34 datasheet: [Google Scholar]
  30. Chandrasekaran, N., & Guha, A. (2012). Study of prediction methods for NOx emission from turbofan engines. Journal of Propulsion and Power, 28(1), 170–180. [Google Scholar]
  31. Caputo, A. (2018). Fattori di emissione atmosferica di gas a effetto serra e altri gas nel settore elettrico. ISPRA, Report, 280. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.