Open Access
E3S Web Conf.
Volume 312, 2021
76th Italian National Congress ATI (ATI 2021)
Article Number 11006
Number of page(s) 17
Section Turbomachinery
Published online 22 October 2021
  1. J.S. Pereira, J.B. Ribeiro, R. Mendes, G.C. Vaz, and J.C. André, “ORC based microcogeneration systems for residential application - A state of the art review and current challenges,” Renew. Sustain. Energy Rev., vol. 92, no. May, pp. 728–743, 2018, doi: 10.1016/j.rser.2018.04.039. [Google Scholar]
  2. S. Ful H. Gilani, M. Hbin M. Khir, R. Ibrahim, H. Kirmani, and H. Gilani, “Modelling and development of a vibration-based electromagnetic energy harvester for industrial centrifugal pump application,” Microelectronics J., vol. 66, no. April, pp. 103–111, 2017, doi: 10.1016/j.mejo.2017.06.005. [Google Scholar]
  3. Cipollone, R., Bianchi, G., Di Battista, D., Fatigati, F., Fuel economy benefits of a new engine cooling pump based on sliding vane technology with variable eccentricity, (2015) Energy Procedia, 82, pp. 265–272. [Google Scholar]
  4. Castiglione, T., Pizzonia, F., Bova, S., A novel cooling system control strategy for internal combustion engines, (2016) SAE International Journal of Materials and Manufacturing, 9 (2), pp. 294–302. [Google Scholar]
  5. Cipollone, R., Di Battista, D., Gualtieri, A., A novel engine cooling system with two circuits operating at different temperatures, (2013) Energy Conversion and Management, 75, pp. 581–592. [Google Scholar]
  6. Malvicino, C., Di Sciullo, F., Ferraris, W., Vestrelli, F., Beltramelli, F., Advanced Dual Level Vehicle Heat Rejection System for Passenger Cars, (2012) SAE International Journal of Engines, 5 (3), pp. 1260–1267. [Google Scholar]
  7. Cipollone, R., Di Battista, D., Gualtieri, A., Head and block split cooling in ICE, (2012) IFAC Proceedings Volumes (IFAC-PapersOnline), 45 (30), pp. 400–407. [Google Scholar]
  8. Di Battista, D., Di Bartolomeo, M., Cipollone, R., Flow and thermal management of engine intake air for fuel and emissions saving, (2018) Energy Conversion and Management, 173, pp. 46–55. [Google Scholar]
  9. J.R. Serrano, P. Piqueras, J. De la Morena, A. Gomez-Vilanova, and S. Guilain, “Methodological analysis of variable geometry turbine technology impact on the performance of highly downsized spark-ignition engines,” Energy, vol. 215, 2021, doi: 10.1016/ [Google Scholar]
  10. Di Battista, D., Cipollone, R., High efficiency air conditioning model based analysis for the automotive sector, (2016) International Journal of Refrigeration, 64, pp. 108122. [Google Scholar]
  11. J. Guo and F. Jiang, “A novel electric vehicle thermal management system based on cooling and heating of batteries by refrigerant,” Energy Convers. Manag., vol. 237, p. 114–145, 2021, doi: 10.1016/j.enconman.2021.114145. [Google Scholar]
  12. D. Cha, W. Yang, and Y. Kim, “Performance improvement of self-humidifying PEM fuel cells using water injection at various start-up conditions,” Energy, vol. 183, pp. 514–524, 2019, doi: 10.1016/ [Google Scholar]
  13. S. Liu, J. Song, J. Shi, and B. Yang, “An improved series-parallel optimization approach for cooling water system,” Appl. Therm. Eng., vol. 154, no. February, pp. 368–379, 2019, doi: 10.1016/j.applthermaleng.2019.03.048. [Google Scholar]
  14. A Protopopov and V Vigovskij, Development of methods for high-speed centrifugal pump analysis 2019 IOP Conf. Ser.: Mater. Sci. Eng. 492 012003 [Google Scholar]
  15. Kraeva, E.M. Optimization of the centrifugal impeller flow passage in high-speed pumps. Russ. Aeronaut. 54, 154 (2011). [Google Scholar]
  16. Huan, Yy., Liu, Yy., Li, Xj. et al. Experimental and numerical investigations of cavitation evolution in a high-speed centrifugal pump with inducer. J Hydrodyn 33, 140–149 (2021). [Google Scholar]
  17. Subroto, and Marwan Effendy, Optimization of centrifugal pump performance with various blade number, AIP Conference Proceedings 2114, 020016 (2019); [Google Scholar]
  18. Wang W., Li Z. Influence of different types of volutes on centrifugal aviation fuel pump. Advances in Mechanical Engineering. March 2021. doi: 10.1177/16878140211005202 [Google Scholar]
  19. Xiaoyu, Li, Yunguang, Ji, Hongbin, Cui and Shuqi, Xue, Study of Mechanical Performance Affecting Factors in Split Casing Pump. (2020). Regular Issue, 10(2), 31–37. doi: 10.35940/ijeat.b1992.1210220 [Google Scholar]
  20. Yang Y., Zhou L., Zhou H., Lv W., Wang J., Shi W., He Z. Optimal Design of Slit Impeller for Low Specific Speed Centrifugal Pump Based on Orthogonal Test. Journal of Marine Science and Engineering. 2021; 9(2):121. [Google Scholar]
  21. Mariani, L., Di Bartolomeo, M., Di Battista, D., Cipollone, R., Fremondi, F., Roveglia, R., Experimental and numerical analyses to improve the design of engine coolant pumps, (2020) E3S Web of Conferences, 197, art. no. 06017. [Google Scholar]
  22. R. Cipollone, Viscous Flow Calculation in a centrifugal Impeller, Master Thesis at Von Karman Institute for Fluid dynamics, Brussels 1984 [Google Scholar]
  23. R. Cipollone, R.A. Van den Braembussche, Quasi three-dimensional viscous flow in a centrifugal compressor impeller. XXXIX Congresso nazionale dell'Associazione Termotecnica Italiana A.T.I., L'Aquila, Italy, 12-14 September, 1984, Proceedings Vol. I.I., pp. 971–984. [Google Scholar]
  24. Lei, C., Yiyang, Z., Zhengwei, W., Yexiang, X., and Ruixiang, L. (July 1, 2015). “Effect of Axial Clearance on the Efficiency of a Shrouded Centrifugal Pump.” ASME.J. Fluids Eng. July 2015; 137(7): 071101 [Google Scholar]
  25. B. Neumann, “The interaction between geometry and performance of a centrifugal pump,” 1991. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.