Open Access
Issue
E3S Web Conf.
Volume 312, 2021
76th Italian National Congress ATI (ATI 2021)
Article Number 11017
Number of page(s) 17
Section Turbomachinery
DOI https://doi.org/10.1051/e3sconf/202131211017
Published online 22 October 2021
  1. Kang, Z., Catal, C. and Tekinerdogan, B. “Remaining Useful Life (RUL) Prediction of Equipment in Production Lines Using Artificial Neural Networks.”, Sensors, vol. 21, 932, 2011. [Google Scholar]
  2. Wang, T. “Trajectory Similarity Based Prediction for Remaining Useful Life Estimation.”, 2010. [Google Scholar]
  3. Wang, T., Yu, J., & Siegel, D., and Lee, J. “A similarity-based prognostics approach for Remaining Useful Life estimation of engineered systems.”, 1–6. 10.1109/PHM.2008.4711421, 2008. [Google Scholar]
  4. Heimes, F. “Recurrent neural networks for remaining useful life estimation.”, 1–6. 10.1109/PHM.2008.4711422, 2008. [Google Scholar]
  5. Li, X., Ding, Q., and Sun, J.Q. “Remaining Useful Life Estimation in Prognostics Using Deep Convolution Neural Networks.”, Reliability Engineering & System Safety. 172. 10.1016/j.ress.2017.11.021, 2017. [Google Scholar]
  6. Yuan, M., Wu, Y. and Lin, L. “Fault diagnosis and remaining useful life estimation of aero engine using LSTM neural network.”, 2016 IEEE International Conference on Aircraft Utility Systems (AUS), pp. 135–140, 2016. [Google Scholar]
  7. Taha, H., Sakr, A., and Yacout, S. “Aircraft Engine Remaining Useful Life Prediction Framework for Industry 4.0”, 2019. [Google Scholar]
  8. Bakir, A., Zaman, M., Hassan, A., and Hamid, M. “Prediction of remaining useful life for mech equipment using regression.”, Journal of Physics: Conference Series. 1150. 012012. 10.1088/1742-6596/1150/1/012012, 2019. [Google Scholar]
  9. Aye, S.A. and Heyns, S. “An integrated Gaussian process regression for prediction of remaining useful life of slow speed bearings based on acoustic emission.”, Mechanical Systems and Signal Processing. 84. pp. 485498. 10.1016/j.ymssp.2016.07.039, 2017. [Google Scholar]
  10. Liu, J. and Chen, Z. “Remaining Useful Life Prediction of Lithium-Ion Batteries Based on Health Indicator and Gaussian Process Regression Model”, IEEE Access, vol. 7, pp. 39474–39484, 2019. [Google Scholar]
  11. Saxena, A., Goebel, K., Simon, D., and Eklund, N. “Damage propagation modeling for aircraft engine run-to-failure simulation.”, 2008 International Conference on Prognostics and Health Management, pp. 1–9, 2008. [Google Scholar]
  12. Zhao, C., Huang, X., Li, Y., Yousaf Iqbal, M. “A Double-Channel Hybrid Deep Neural Network Based on CNN and BiLSTM for Remaining Useful Life Prediction”, Sensors, vol. 20, 7109, 2020. [Google Scholar]
  13. Peng, C., Chen, Y., Chen, Q., Tang, Z., Li, L., Gui, W., (2021). “A Remaining Useful Life Prognosis of Turbofan Engine Using Temporal and Spatial Feature Fusion”, Sensors, vol. 21, 418, 2021. [Google Scholar]
  14. Molnar, C. “Interpretable machine learning. A Guide for Making Black Box Models Explainable”, https://christophm.github.io/interpretable-ml-book/, p.49, 2018. [Google Scholar]
  15. Wang, J. “An Intuitive Tutorial to Gaussian Processes Regression”, 2020. [Google Scholar]
  16. https://www.heatonresearch.com/2017/06/01/hidden-layers.html [Google Scholar]
  17. https://www.mathworks.com/help/deeplearning/ref/trainlm.html [Google Scholar]
  18. Sambasivan, R. and Das, S. “Big Data Regression Using Tree Based Segmentation,” 2017 14th IEEE India Council International Conference (INDICON), pp. 1–6, 2017. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.