Open Access
Issue
E3S Web Conf.
Volume 313, 2021
19th International Stirling Engine Conference (ISEC 2021)
Article Number 04003
Number of page(s) 11
Section Novel Designs of Drive Mechanisms and Configurations
DOI https://doi.org/10.1051/e3sconf/202131304003
Published online 22 October 2021
  1. P. Radgen, E. Blaustein, Compressed air systems in the European Union (LOG_X Verlag, Stuttgart, 2001). [Google Scholar]
  2. M. Unger, P. Radgen, Energy Efficiency in Compressed Air Systems: A review of energy efficiency potentials, technological development, energy policy actions and future importance, in: Bertoldi, Paolo, Proceedings of the 10th International Conference on Energy Efficiency in Motor Driven Systems (EEMODS’ 2017), Rome, Italy, 207–233 (2018). [Google Scholar]
  3. L. Miró, S. Brückner, L.F. Cabeza, Mapping and discussing Industrial Waste Heat (IWH) potentials for different countries, Renew. Sustain. Energy Rev. 51 (2015), 847–855 https://doi.org/10.1016/j.rser.2015.06.035. [Google Scholar]
  4. M. Papapetrou, G. Kosmadakis, A. Cipollina, U. La Commare, G. Micale, Industrial waste heat: Estimation of the technically available resource in the EU per industrial sector, temperature level and country, Appl. Therm. Eng 138 (2018), 207–216 https://doi.org/10.1016/j.applthermaleng.2018.04.043. [Google Scholar]
  5. V. Bush, Apparatus for Compressing Gases, US Patent 2, 157, 229 (1935). [Google Scholar]
  6. W.R. Martini, The Thermocompressor and its Application to Artificial Heart Power, in: ACS, Proc. 4th IECEC, Washington, D.C., USA, 107–114 (1969). [Google Scholar]
  7. B.M. Gibson, C.J. Hornbeck, R.C. Longworth, L.T. Harmison, Bypass gas actuated thermocompressor as an implantable artificial heart power source, in: SAE, Proc. 6th IECEC, Boston, MA, USA (1971). [Google Scholar]
  8. J.C. Moise, M.I. Rudnicki, R.J. Faeser, Development of a thermocompressor power system for implantable artificial heart application, in: ASME, Proc. 8th IECEC, Philadelphia, PA, USA, 511–535 (1973). [Google Scholar]
  9. M.A. White, Miniature Stirling Engines for Artificial Heart Power, in: AIChE, Proc. 18th IECEC, Orlando, FL, USA, 694–701 (1983). [Google Scholar]
  10. A.A. Kornhauser, Analysis of an idealized Stirling thermocompressor, in: IEEE, Proc. 31st IECEC, Washington, DC, USA, 1331–1336 (1996) https://doi.org/10.1109/IECEC.1996.553909. [Google Scholar]
  11. S. Thomas, E.J. Barth, Multi-Stage Modeling of a Stirling Thermocompressor, in: ASME, Proceedings of the ASME/BATH 2017 Symposium on Fluid Power and Motion Control (FPMC2017), Sarasota, FL, USA (2017) https://doi.org/10.1115/FPMC2017-4320. [Google Scholar]
  12. F. Fischer, H.-D. Kühl, Analytical model for an overdriven free-displacer thermocompressor, Appl. Therm. Eng 185 (2021), 116251 https://doi.org/10.1016/j.applthermaleng.2020.116251. [Google Scholar]
  13. G.Y. Umarov, V.S. Trukhov, I.A. Tursunbaev, Prospects for using dynamic thermocompression converter in solar power plants, Appl. Sol. Energy 10 (1974), 53–56. [Google Scholar]
  14. A.G. Popov, V.S. Trukhov, Determination of the Thermodynamic Parameters of a Thermal Compressor, Appl. Sol. Energy 13 (1977), 9–14. [Google Scholar]
  15. A.P.M. Glassford, Adiabatic cycle analysis for the valved thermal compressor, J. Energy 3 (1979), 306–314 https://doi.org/10.2514/3.48007. [Google Scholar]
  16. P. Arquès, Thermodynamical cycle analysis of gas in a Thermocompressor, in: ANS, Proc. 33rd IECEC, Colorado Springs, CO, USA (1998). [Google Scholar]
  17. P. Arquès, Piston movement in thermocompressor, in: AIChE, Proc. 32nd IECEC, Honolulu, HI, USA, 1003-1008 (1997) https://doi.org/10.1109/IECEC.1997.661906. [Google Scholar]
  18. H. Karabulut, Thermodynamic Analysis Of Bush Engine, Gazi Univ. J. Sci. 16 (2003), 135–144. [Google Scholar]
  19. M.J. Edwards, R.B. Peterson, Modeling and Thermodynamic Cycle Performance of a Miniature Reciprocating Thermocompressor, in: AIAA, Proceedings 3rd IECEC, San Francisco, CA, USA (2005). [Google Scholar]
  20. E. Blagin, A.I. Dovgyallo, D.A. Uglanov, S.S. Dostovalova, Thermodynamic calculation of a thermomechanical compressor, VESTNIK of the Samara State Aerospace University 12 (2014), 25–30 https://doi.org/10.18287/1998-6629-2013-03-2(41)-25-30. [Google Scholar]
  21. H.-D. Kühl, Verallgemeinerte thermodynamische Beschreibung regenerativer Gaskreisprozesse, Dissertation, Universität Dortmund, Lehrstuhl für Thermodynamik (VDI-Verlag, Düsseldorf, 1990). [Google Scholar]
  22. G. Walker, Stirling-cycle machines (Clarendon Press, Oxford, 1973). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.