Open Access
Issue
E3S Web Conf.
Volume 313, 2021
19th International Stirling Engine Conference (ISEC 2021)
Article Number 06001
Number of page(s) 11
Section Renewable Applications of Stirling Engines
DOI https://doi.org/10.1051/e3sconf/202131306001
Published online 22 October 2021
  1. K. Wang, S. R. Sanders, S. Dubey, F. H. Choo, and F. Duan, “Stirling cycle engines for recovering low and moderate temperature heat: A review, ” Renew. Sustain. Energy Rev., vol. 62, pp. 89–108, 2016, doi: 10.1016/j.rser.2016.04.031. [CrossRef] [Google Scholar]
  2. B. Kongtragool and S. Wongwises, “A review of solar-powered Stirling engines and low temperature differential Stirling engines, ” Renew. Sustain. Energy Rev., vol. 7, no. 2, pp. 131–154, 2003, doi: 10.1016/S1364-0321(02)00053-9. [CrossRef] [Google Scholar]
  3. A. Z. Hafez, A. Soliman, K. A. El-Metwally, and I. M. Ismail, “Solar parabolic dish Stirling engine system design, simulation, and thermal analysis, ” Energy Convers. Manag., vol. 126, pp. 60–75, 2016, doi: 10.1016/j.enconman.2016.07.067. [CrossRef] [Google Scholar]
  4. P. Fraser and P. S. A Klein, “Stirling Dish System Performance Prediction Model, ” Mech. Eng., vol. Master of, p. 203, 2008. [Google Scholar]
  5. G. T. Udeh, S. Michailos, D. Ingham, K. J. Hughes, L. Ma, and M. Pourkashanian, “A techno-enviro-economic assessment of a biomass fuelled micro-CCHP driven by a hybrid Stirling and ORC engine, ” Energy Convers. Manag., vol. 227, no. July 2020, p. 113601, 2021, doi: 10.1016/j.enconman.2020.113601. [CrossRef] [Google Scholar]
  6. M. Chahartaghi and M. Sheykhi, “Energy, environmental and economic evaluations of a CCHP system driven by Stirling engine with helium and hydrogen as working gases, ” Energy, vol. 174, pp. 1251–1266, 2019, doi: 10.1016/j.energy.2019.03.012. [CrossRef] [Google Scholar]
  7. S. Ramachandran, N. Kumar, and M. V. Timmaraju, “Thermodynamic Investigation of an Irreversible Combined Stirling-Organic Rankine Cycle for Maximum Power Output Condition, ” J. Eng. Gas Turbines Power, vol. 143, no. 7, pp. 1–7, 2021, doi: 10.1115/1.4049775. [CrossRef] [Google Scholar]
  8. M. Bahrami, A. A. Hamidi, and S. Porkhial, “Investigation of the effect of organic working fluids on thermodynamic performance of combined cycle stirling-ORC, ” Int. J. Energy Environ. Eng., vol. 4, no. 1, pp. 1–9, 2013, doi: 10.1186/2251-6832-4-12. [CrossRef] [Google Scholar]
  9. F. Nepveu, A. Ferriere, and F. Bataille, “Thermal model of a dish/Stirling systems, ” Sol. Energy, vol. 83, no. 1, pp. 81–89, 2009, doi: 10.1016/j.solener.2008.07.008. [CrossRef] [Google Scholar]
  10. T. Liao and J. Lin, “Optimum performance characteristics of a solar-driven Stirling heat engine system, ” Energy Convers. Manag., vol. 97, pp. 20–25, 2015, doi: 10.1016/j.enconman.2015.03.027. [CrossRef] [Google Scholar]
  11. E. Gholamalizadeh and J. D. Chung, “Thermal analysis of the receiver of a standalone pilot solar dish-Stirling system, ” Entropy, vol. 20, no. 6, 2018, doi: 10.3390/e20060429. [CrossRef] [Google Scholar]
  12. C.-L. Chen, C.-E. Ho, and H.-T. Yau, “Performance Analysis and Optimization of a Solar Powered Stirling Engine with Heat Transfer Considerations, ” Energies, vol. 5, no. 12, pp. 3573–3585, 2012, doi: 10.3390/en5093573. [CrossRef] [Google Scholar]
  13. L. Yaqi, H. Yaling, and W. Weiwei, “Optimization of solar-powered Stirling heat engine with finite-time thermodynamics, ” Renew. Energy, vol. 36, no. 1, pp. 421–427, 2011, doi: 10.1016/j.renene.2010.06.037. [CrossRef] [Google Scholar]
  14. S. S. Bahari, M. Sameti, M. H. Ahmadi, and M. S. Haghgooyan, “Optimisation of a combined Stirling cycle–organic Rankine cycle using a genetic algorithm, ” Int. J. Ambient Energy, vol. 37, no. 4, pp. 398–402, 2016, doi: 10.1080/01430750.2014.977497. [CrossRef] [Google Scholar]
  15. W. Reinalter et al., “Detailed performance analysis of a 10kW dish/stirling system, ” J. Sol. Energy Eng. Trans. ASME, vol. 130, no. 1, pp. 0110131–0110136, 2008, doi: 10.1115/1.2807191. [CrossRef] [Google Scholar]
  16. J. Sarkar, “Novel pinch point method based exergetic optimisation of subcritical organic Rankine cycle for waste heat recovery, ” Int. J. Exergy, vol. 25, no. 4, pp. 281–299, 2018, doi: 10.1504/IJEX.2018.091551. [CrossRef] [Google Scholar]
  17. V. Siva Reddy, S. C. Kaushik, K. R. Ranjan, and S. K. Tyagi, “State-of-the-art of solar thermal power plants A review, ” Renew. Sustain. Energy Rev., vol. 27, pp. 258–273, 2013, doi: 10.1016/j.rser.2013.06.037. [CrossRef] [Google Scholar]
  18. M. Abbas, B. Boumeddane, N. Said, and A. Chikouche, “Dish Stirling technology: A 100 MW solar power plant using hydrogen for Algeria, ” Int. J. Hydrogen Energy, vol. 36, no. 7, pp. 4305–4314, 2011, doi: 10.1016/j.ijhydene.2010.12.114. [CrossRef] [Google Scholar]
  19. M. A. Al-Nimr and W. A. Al-Ammari, “A novel hybrid and interactive solar system consists of Stirling engine acuum evaporator thermoelectric cooler for electricity generation and water distillation, ” Renew. Energy, vol. 153, pp. 1053–1066, 2020, doi: 10.1016/j.renene.2020.02.072. [CrossRef] [Google Scholar]
  20. A. M. A. Al-Dafaie, M. E. Dahdolan, and M. A. Al-Nimr, “Utilizing the heat rejected from a solar dish Stirling engine in potable water production, ” Sol. Energy, vol. 136, pp. 317–326, 2016, doi: 10.1016/j.solener.2016.07.007. [CrossRef] [Google Scholar]
  21. X. Lai, R. Long, Z. Liu, and W. Liu, “Stirling engine powered reverse osmosis for brackish water desalination to utilize moderate temperature heat, ” Energy, vol. 165, pp. 916–930, 2018, doi: 10.1016/j.energy.2018.09.125. [CrossRef] [Google Scholar]
  22. S. Ramachandran, N. Kumar, and M. V. Timmaraju, “Thermodynamic Analysis of Solar Low-Temperature Differential Stirling Engine Considering Imperfect Regeneration and Thermal Losses, ” J. Sol. Energy Eng., vol. 142, no. 5, Mar. 2020, doi: 10.1115/1.4046629. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.