Open Access
Issue
E3S Web Conf.
Volume 313, 2021
19th International Stirling Engine Conference (ISEC 2021)
Article Number 08005
Number of page(s) 15
Section Stirling Engines Prototype Development and Testing
DOI https://doi.org/10.1051/e3sconf/202131308005
Published online 22 October 2021
  1. Kölsch, B. & Radulovic, J. Utilisation of diesel engine waste heat by Organic Rankine Cycle. Appl. Therm. Eng. 78, 437–448 (2015). [Google Scholar]
  2. Zhao, R. et al. Parametric study of a turbocompound diesel engine based on an analytical model. Energy 115, 435–445 (2016). [Google Scholar]
  3. Pasini, G. et al. Evaluation of an electric turbo compound system for SI engines : A numerical approach. Appl. Energy 162, 527–540 (2016). [Google Scholar]
  4. Kim, T. Y., Kwak, J. & Kim, B. Energy harvesting performance of hexagonal shaped thermoelectric generator for passenger vehicle applications: An experimental approach. Energy Convers. Manag. 160, 14–21 (2018). [Google Scholar]
  5. Sahoo, D., Kotrba, A., Steiner, T. & Swift, G. Waste Heat Recovery for Light-Duty Truck Application Using ThermoAcoustic Converter Technology. SAE Int. J. Engines 10, 196–202 (2017). [Google Scholar]
  6. Uppuluri, S., Khalane, H., Naiknaware, A., Sahoo, D. & Kotrba, A. Exhaust Technologies in Support of LD and HD Reductions of GHGs and Criteria Pollutants. in Vehicle Thermal Management Systems Conference 127–140 (2017). [Google Scholar]
  7. Mansour, C., Bou Nader, W., Dumand, C. & Nemer, M. Waste heat recovery from engine coolant on mild hybrid vehicle using organic Rankine cycle. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 233, 2502–2517 (2019). [Google Scholar]
  8. Reine, A. & Bou Nader, W. Fuel consumption potential of different external combustion gas-turbine thermodynamic configurations for extended range electric vehicles. Energy 175, 900–913 (2019). [Google Scholar]
  9. Bou Nader, W. Thermoelectric generator optimization for hybrid electric vehicles. Appl. Therm. Eng. 167, 114761 (2020). [Google Scholar]
  10. Bou Nader, W., Chamoun, J. & Dumand, C. Thermoacoustic engine as waste heat recovery system on extended range hybrid electric vehicles. Energy Convers. Manag. 215, 112912 (2020). [Google Scholar]
  11. Backhaus, S. & Swift, G. W. A thermoacoustic-Stirling heat engine: Detailed study. J. Acoust. Soc. Am. 107, 3148–3166 (2000). [Google Scholar]
  12. Yu, Z. & Jaworski, A. J. Impact of acoustic impedance and flow resistance on the power output capacity of the regenerators in travelling-wave thermoacoustic engines. Energy Convers. Manag. 51, 350–359 (2010). [Google Scholar]
  13. Timmer, M. A. G., de Blok, K. & van der Meer, T. H. Review on the conversion of thermoacoustic power into electricity. J. Acoust. Soc. Am. 143, 841-857. DOI: 10.1121/1.5023395 (2018). [Google Scholar]
  14. Swift, G. W. Thermoacoustics: A Unifying Perspective for Some Engines and Refrigerators. (ASA Press/Springer. ISBN:978-3-319-66932-8, 2017). [Google Scholar]
  15. Hu, Z. J., Li, Z. Y., Li, Q. & Li, Q. Evaluation of thermal efficiency and energy conversion of thermoacoustic Stirling engines. Energy Convers. Manag. 51, 802–812 (2010). [Google Scholar]
  16. Iniesta, C., Olazagoitia, J. L., Vinolas, J. & Gros, J. New method to analyse and optimise thermoacoustic power generators for the recovery of residual energy. Alexandria Eng. J. 59, 3907–3917 (2020). [Google Scholar]
  17. Iniesta, C., Olazagoitia, J. L., Gros, J., Vinolas, J. & Aranceta, J. Introduction to thermoacoustic Stirling engines: First steps in foundations and praxis. (Thomson Reuters, 2020). [Google Scholar]
  18. Yu, Z., Jaworski, A. J. & Backhaus, S. Design of a low-cost thermoacoustic electric generator and its experimental verification. in Procceding ASME 10th Biennial Conference on Engineering Systems Design and Analysis. 12-14 July 191–199 (2010). [Google Scholar]
  19. Chen, B. M., Abakr, Y. A., Riley, P. H. & Hann, D. B. Development of thermoacoustic engine operating by waste heat from cooking stove. AIP Conf. Proc. 1440, 532–540 (2012). [Google Scholar]
  20. De Blok, K. On the design of near atmospheric air operated thermoacoustic engines. [Google Scholar]
  21. Backhaus, S., Tward, E. & Petach, M. Traveling-wave thermoacoustic electric generator. Appl. Phys. Lett. 85, 1085–1087 (2004). [Google Scholar]
  22. Telesz, M. P. Design and testing of a thermoacoustic power converter. (Master Thesis, Georgia Institute of Technology, USA, 2006). [Google Scholar]
  23. Luo, E., Wu, Z., Dai, W., Li, S. & Zhou, Y. A 100 W-class traveling-wave thermoacoustic electricity generator. Chinese Sci. Bull. 53, 1453–1456 (2008). [Google Scholar]
  24. Kloprogge, T. Turbine Design for Thermoacoustic Generator. (Graduation project, Inholland University of Applied Sciences, The Netherlands, 2012). [Google Scholar]
  25. Wilcox, D. Experimental investigation of a thermoacoustic-Stirling engine electric generator with Gedeon streaming supression. (Master Thesis. The Pennsylvania State University, USA, 2011). [Google Scholar]
  26. Wang, Y., Li, Z. & Li, Q. A novel method for improving the performance of thermoacoustic electric generator without resonator. Energy Convers. Manag. 110, 135–141 (2016). [Google Scholar]
  27. Wu, Z. H., Man, M., Luo, E. C., Dai, W. & Zhou, Y. Experimental investigation of a 500 W traveling-wave thermoacoustic electricity generator. Chin Sci Bull vol. 56 1975–1977 (2011). [Google Scholar]
  28. Sun, D. M. et al. A traveling-wave thermoacoustic electric generator with a variable electric R-C load. Appl. Energy 106, 377–382 (2013). [Google Scholar]
  29. Kang, H., Cheng, P., Yu, Z. & Zheng, H. A two-stage traveling-wave thermoacoustic electric generator with loudspeakers as alternators. Appl. Energy 137, 9–17 (2015). [Google Scholar]
  30. Wang, K. et al. Operating characteristics and performance improvements of a 500W traveling-wave thermoacoustic electric generator. Appl. Energy 160, 853–862 (2015). [Google Scholar]
  31. Wang, K. et al. An acoustically matched traveling-wave thermoacoustic generator achieving 750 W electric power. Energy 103, 313–321 (2016). [Google Scholar]
  32. Wu, Z., Zhang, L., Dai, W. & Luo, E. Investigation on a 1kW traveling-wave thermoacoustic electrical generator. Appl. Energy 124, 140–147 (2014). [Google Scholar]
  33. Wu, Z., Yu, G., Zhang, L., Dai, W. & Luo, E. Development of a 3kW doubleacting thermoacoustic Stirling electric generator. Appl. Energy 136, 866–872 (2014). [Google Scholar]
  34. Bi, T. et al. Development of a 5kW traveling-wave thermoacoustic electric generator. Appl. Energy 1–7 (2015) doi: 10.1016/j.apenergy.2015.12.034. [Google Scholar]
  35. Keolian, R. & Bastyr, K. Thermoacoustic piezoelectric gerenator. (2006). [Google Scholar]
  36. Keolian, R. & Backhaus, S. Energy conversion through thermoacoustics and piezoelectricity. J. Acoust. Soc. Am. 130, 2504 (2011). [Google Scholar]
  37. Yu, Z., Jaworski, A. J. & Backhaus, S. A low-cost electricity generator for rural areas using a travelling-wave looped-tube thermoacoustic engine. Proc. Inst. Mech. Eng. Part A J. Power Energy 224, 787–795 (2010). [Google Scholar]
  38. Yu, Z., Saechan, P. & Jaworski, A. J. A method of characterising performance of audio loudspeakers for linear alternator applications in low-cost thermoacoustic electricity generators. Appl. Acoust. 72, 260–267 (2011). [Google Scholar]
  39. Jaworski, a. J. & Mao, X. Development of thermoacoustic devices for power generation and refrigeration. Proc. Inst. Mech. Eng. Part A J. Power Energy 227, 762–782 (2013). [Google Scholar]
  40. Rossi, A., Immovilli, F., Bianchini, C., Bellini, A. & Serra, G. Design of linear alternators for thermoacoustic machines. in 2009 IEEE Energy Conversion Congress and Exposition 2436–2440 (IEEE). doi:10.1109/ECCE.2009.5316142. [Google Scholar]
  41. Petach, M., Tward, E. & Backhaus, S. Design and Testing of A Thermal to Electric Power Converter Based On Thermoacoustic Technology. in 2nd International Energy Conversion Engineering Conference (American Institute of Aeronautics and Astronauti). [Google Scholar]
  42. Gonen, E. & Grossman, G. Effect of variable mechanical resistance on electrodynamic alternator efficiency. Energy Convers. Manag. 88, 894–906 (2014). [Google Scholar]
  43. Migliori, A. & Swift, G. W. Liquid-sodium thermoacoustic engine. Appl. Phys. Lett. 53, 355–357 (1988). [Google Scholar]
  44. Castrejón-Pita, A. A. & Huelsz, G. Heat-to-electricity thermoacoustic-magnetohydrodynamic conversion. Appl. Phys. Lett. 90, 174110 (2007). [Google Scholar]
  45. Mirhoseini, S. M. H. & Alemany, A. Analytical study of thermoacoustic MHD generator. Magnetohydrodynamics 51, 519–530 (2015). [Google Scholar]
  46. Roux, J.-P., Alemany, A. & Montisci, A. Thermoacoustic magnetohydrodynamic electric generator. 1–14 (2015). [Google Scholar]
  47. Dovgjallo, A. A. I., Tsapkova, A. B. & Shimanov, A. A. Bi-Directional Impulse Turbine for Thermo-Acoustic Generator. in 18th International Conference on Energy Efficiency and Renewable Energy Technologies vol. 3. [Google Scholar]
  48. Boessneck, E. T. & Salem, T. E. Performance Characterization of Bi-Directional Turbines for Use in Thermoacoustic Generator Applications. in Proceedings of ASME 2016 10th International Conference on Energy Sustainability (ASME, 2016). [Google Scholar]
  49. Jin, T. Preliminary Study on Circuit Simulation of Thermo Acoustic Engines. in AIP Conference Proceedings vol. 823 1103–1108 (AIP, 2006). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.