Open Access
Issue
E3S Web Conf.
Volume 314, 2021
The 6th edition of the International Conference on GIS and Applied Computing for Water Resources (WMAD21)
Article Number 02001
Number of page(s) 5
Section Big-data & Machine Learning
DOI https://doi.org/10.1051/e3sconf/202131402001
Published online 26 October 2021
  1. K. E. Nicolai, “A Green Gambit: The Development of Environmental Foreign Policy in Morocco, ” J. North African Stud., pp. 1–27, (Dec. 2020), DOI: 10.1080/13629387.2020.1865931. [Google Scholar]
  2. M. L. Sall, A. K. D. Diaw, D. Gningue-Sall, S. Efremova Aaron, and J.-J. Aaron, “Toxic heavy metals: impact on the environment and human health, and treatment with conducting organic polymers, a review, ” Environ. Sci. Pollut. Res., vol. 27, no. 24, pp. 29927–29942, (2020), DOI: 10.1007/s11356-020-09354-3. [Google Scholar]
  3. S. B. Norton, D. J. Rodier, W. H. van der Schalie, W. P. Wood, M. W. Slimak, and J. H. Gentile, “A framework for ecological risk assessment at the EPA, ” Environ. Toxicol. Chem., vol. 11, no. 12, pp. 1663–1672, ( Dec. 1992), DOI: https://doi.org/10.1002/etc.5620111202. [Google Scholar]
  4. S. G. K. Patro and K. K. sahu, “Normalization: A Preprocessing Stage, ” Iarjset, pp. 20–22, (2015), doi: 10.17148/iarjset.2015.2305. [Google Scholar]
  5. Z. Bayatzadeh Fard, F. Ghadimi, and H. Fattahi, “Use of artificial intelligence techniques to predict distribution of heavy metals in groundwater of Lakan lead-zinc mine in Iran, ” J. Min. Environ., vol. 8, no. 1, pp. 35–48, (2017), DOI: 10.22044/jme.2016.592. [Google Scholar]
  6. A. Abdallaoui and H. El Badaoui, “Comparative study of two stochastic models using the physicochemical characteristics of river sediment to predict the concentration of toxic metals, ” J. Mater. Environ. Sci., vol. 6, no. 2, pp. 445–454, (2015). [Google Scholar]
  7. A. E. H. H. Alayat, H. El Badaoui, A. Abdallaoui, D. Abrid, “DEVELOPMENT OF MATHEMATICAL MODELS FOR PREDICTING THE IRON CONCENTRATIONS OF LAKE OUBEIRA WATERS (NE ALGERIAN), ” J. Fundam. Appl. Sci., vol. 10, no. 1, pp. 83–96, (2018), DOI: http://dx.doi.org/10.4314/jfas.v10i1.6. [Google Scholar]
  8. H. E. B. A Abdallaoui, “Prédiction des teneurs en métaux lourds des sédiments à partir de leurs caractéristiques physico-chimiques, ” J. Phys. Chem. News, vol. 58, pp. 90–97, (Apr. 2011). [Google Scholar]
  9. H. El El Badaoui, A. Abdallaoui, and I. Manssouri, “Elaboration de modèles mathématiques stochastiques pour la prédiction des teneurs en métaux lourds des eaux superficielles en utilisant les réseaux de neurones artificiels et la régression linéaire multiple, ” J. Hydrocarb. Mines Environ. Res., vol. 3, no. 2, pp. 31–36, (2012). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.