Open Access
Issue
E3S Web Conf.
Volume 314, 2021
The 6th edition of the International Conference on GIS and Applied Computing for Water Resources (WMAD21)
Article Number 04003
Number of page(s) 5
Section Geomatics, Remote Sensing and Modelling
DOI https://doi.org/10.1051/e3sconf/202131404003
Published online 26 October 2021
  1. A.K. Mishra, V.P. Singh, A review of drought concepts. J. Hydrol. 391, 202–216 (2010), http://dx.doi.org/10.1016/j.jhydrol.2010.07.012. [Google Scholar]
  2. V.A. Bento Virgílio, C.M. Gouveia, C.C. DaCamara, I.F Trigo, Climatological assessment of drought impact on vegetation health index. Agricultural and Forest Meteorology, 259, 286295 (2018). [Google Scholar]
  3. O. Rojas, A. Vrieling, F. Rembold F, Assessing drought probability for agricultural areas in Africa with coarse resolution remote sensing imagery, Remote sensing of Environment., 115, 343-52 (2011). [Google Scholar]
  4. S. El Khatri, T. El Hairech. ? Drought Conditions and Management Strategies in Morocco. [Google Scholar]
  5. D. Verner, D. Treguer, J. Redwood, J. Christensen, R. Mcdonnell, Y.K. Elbert, S. Belghazi, Climate variability, drought, and drought management in morocco’s agricultural sector, World Bank. [Google Scholar]
  6. A.K. Sahoo, J. Sheffield, M. Pan, E.F Wood, Evaluation of the tropical rainfall measuring mission multi-satellite precipitation analysis (TMPA) for assessment of large-scale meteorological drought, Remote sensing of Environment., 159, 181–193 (2015). [Google Scholar]
  7. Palmer, W.C. Meteorological Drought. Research Paper, 45 (1965), https://www.ncdc.noaa.gov/temp-and-precip/drought/docs/palmer.pdf. [Google Scholar]
  8. Q. Wang, P. Shi, P. T. Lei, G. Geng, J. Liu, X. Mo, X. Li, H. Zhou, J Wu, The alleviating trend of drought in the Huang-Huai-Hai plain of China based on the daily SPEI. (Int. J. Climatol), doi: 10.1002/joc.4244 (2015). [Google Scholar]
  9. T.B. McKee, N.J. Doesken, J. Kleist, The relationship of drought frequency and duration to time scales. In Proceedings of the 8th Conference on Applied Climatology, Boston, MA, USA, 17– 22 January (1993). [Google Scholar]
  10. S.M. Vicente-Serrano, S. Beguería, J.I LópezMoreno, A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index, J. Climate 23, 1696–1718 (2010). [Google Scholar]
  11. V. Potopová, P. Štěpánek, M. Možný, L. Türkott, J. Soukup, Performance of the standardized precipitation evapotranspiration index at various lags for agricultural drought risk assessment in the Czech Republic? Agr. Forest Meteorol., 202, 26–38 (2015). [Google Scholar]
  12. Y. Gu, J.F. Brown, J.P Verdin, B. Wardlow, A five-year analysis of MODIS NDVI and NDWI for grassland drought assessment over the central Great Plains of the United States. Geophysical Research Letters., 34: L06407, doi: 10.1029/2006GL029127 (2007). [Google Scholar]
  13. A.K. Mishra, A.V.M. Ines, N.N DaS, C.P. Khedun, V.P. Singh, B. Sivakumar, J.W. Hansen JW, Anatomy of a local-scale drought: Application of assimilated remote sensing products, crop model, and statistical methods to an agricultural drought study, (Journal of Hydrology), 526:15-29 (2015). [Google Scholar]
  14. J. Rhee, J. Im, G.J. Carbone? Monitoring agricultural drought for arid and humid regions using multi-sensor remote sensing data, (Remote Sensing). [Google Scholar]
  15. S. Sruthi, M.A. Mohammed Aslam MAM, Agricultural drought analysis using the NDVI and land surface temperature data; a case study of Raichur District. Aquatic Procedia; 4:1258-64 (2015). [Google Scholar]
  16. C. Bhuiyan, R.P. Singh, F.N. Kogan, Monitoring drought dynamics in the Aravalli region (India) using different indices based on ground and remote sensing data, (International Journal of Applied Earth Observation and Geoinformation), 289-302 (2006). [Google Scholar]
  17. F.N. Kogan, Application of vegetation index and brightness temperature for drought detection, Advances in Space Research, 15(11), 91-100, (1995). [Google Scholar]
  18. V.A. Bento, I.F. Trigo, C.M. Gouveia, C.C. DaCamara, Contribution of Land Surface Temperature (TCI) to Vegetation Health Index: A Comparative Study Using Clear Sky and AllWeather Climate Data Records, (remote sensing), 10, 1324 (2018). [Google Scholar]
  19. A. Duguay-Tetzlaff, V. Bento, F.M. Göttsche, R. Stöckli, J. Martins, I.F. Trigo, F. Olesen, J. Bojanowski, C. da Camara, H. Kunz, Meteosat Land Surface Temperature Climate Data Record: Achievable Accuracy and Potential Uncertainties, (Remote Sensing), 7, 13139–13156 (2015). [Google Scholar]
  20. K. Didan, A.B. Munoz, R. Solano, A.A. Huete, MODIS Vegetation Index User’s Guide (2015). [Google Scholar]
  21. D. Dutta, A. Kundu, N.R. Patel, S.K. Saha, A.R. Siddiqui, Assessment of agricultural drought in Rajasthan(India) using remote sensing derived Vegetation Condition Index (VCI) and Standardized Precipitation Index (SPI), (The Egyptian Journal of Remote Sensing and Space Sciences), 18, 53–63 (2015). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.