Open Access
Issue
E3S Web Conf.
Volume 317, 2021
The 6th International Conference on Energy, Environment, Epidemiology, and Information System (ICENIS 2021)
Article Number 04033
Number of page(s) 9
Section History and Environment
DOI https://doi.org/10.1051/e3sconf/202131704033
Published online 05 November 2021
  1. S. S. Rahardi, Study on the application of high electrical conductivity materials for improving performance of lithium-ion batteries, 31–42 (2017) [Google Scholar]
  2. B. Wang, Q. Guo, G. Wei, P. Zhang, J. Qu, T. Qi, Hydrometallurgy characterization and atmospheric hydrochloric acid leaching of a limonitic laterite from Indonesia, Hydrometallurgy, 129–130 (2012) [Google Scholar]
  3. K. Shibayama, T. Yokogawa, H. Sato, M. Enomoto, O. Nakai, T. Ito, F. Mizuno, Y. Hattori, Taganito HPAL Plant Project, Miner Eng., 88, 61–5 (2016) [Google Scholar]
  4. T. Gultom, A. Sanipar, High pressure acid leaching: a newly introduced technology in Indonesia, Int Conf Min Enviromental Technol., (2020) [Google Scholar]
  5. V. C. Srivastava, An evaluation of desulfurization technologies for sulfur removal from liquid fuels, Rsc Adv., 2(3), 759–83 (2012) [Google Scholar]
  6. Y. Huang, D. Dang, G. Han, S. Yang, Research on the desulfurization of high sulfur bauxite, In: TMS Annual Meeting & Exhibition Springer, 181–5 2018 [Google Scholar]
  7. A. P. Chandra, A. R. Gerson, A review of the fundamental studies of the copper activation mechanisms for selective fl otation of the sul fi de minerals, sphalerite and pyrite, Adv Colloid Interface Sci., 145(1–2), 97–110 (2009) [Google Scholar]
  8. B. A. Wills, J. A. Finch, Froth flotation, Wills’ Miner Process Technol., 7, (2016) [Google Scholar]
  9. R. Prakash, S. K. Majumder, A. Singh, Chemical Engineering & Processing: Process Intensi fi cation Flotation technique: Its mechanisms and design parameters, 127, 249–70 (2018) [Google Scholar]
  10. Z. Yin, W. Sun, Y. Hu, C. Zhang, Q. Guan, K. Wu, Evaluation of the possibility of copper recovery from tailings by flotation through bench-scale, commissioning, and industrial tests, J Clean Prod., 171, 1039–48 (2018) [Google Scholar]
  11. S. A. Khoso, M. I. Abro, M. H. Agheem, Mineralogical study of Zard Koh and Kulli Koh iron ore deposits of Pakistan, Mehran Univ Res J Eng Technol., 36(4), 8 (2017) [Google Scholar]
  12. G. P. W. Suyantara, T. Hirajima, H. Miki, K. Sasaki, S. Kuroiwa, Y. Aoki, Effect of H2O2 and potassium amyl xanthate on separation of enargite and tennantite from chalcopyrite and bornite using flotation, Miner Eng., 152, 106371 (2020) [Google Scholar]
  13. S. Aghazadeh, S. K. Mousavinezhad, M. G’harabaghi, Chemical and colloidal aspects of collectorless fl otation behavior of sul fi de and non-sul fi de minerals. 225, 203–17 (2015) [Google Scholar]
  14. P. P. Manca, G. Massacci, D. Pintus, G. Sogos, The flotation of sphalerite mine tailings as a remediation method, Miner Eng., 165, 106862 (2021) [Google Scholar]
  15. B. A. Wills, J. Finch, Wills’ mineral processing technology: an introduction to the practical aspects of ore treatment and mineral recovery, (Butterworth-Heinemann, 2015) [Google Scholar]
  16. M. Benzaazoua, H. Bouzahzah, Y. Taha, L. Kormos, D. Kabombo, F. Lessard, Integrated environmental management of pyrrhotite tailings at Raglan Mine: Part 1 challenges of deSulphurization process and reactivity prediction, 162, 86–95 (2017) [Google Scholar]
  17. F. Nakhaei, M. Irannajad, Sulphur removal of iron ore tailings by flotation, J Dispers Sci Technol., 38(12), 1755–63 (2017) [Google Scholar]
  18. D. N. Usman, The availability of the potential of Indonesian iron ore deposits in supporting the national iron and steel industry, J Tek Pertamb., 1–20 (2015) [Google Scholar]
  19. N. Muzakkii, D. Mughni, F. Abdul, Review the effect of temperature resistant to direct reduction of iron ore. J Tek. ITS, 9(2), (2020) [Google Scholar]
  20. S. Oediyani, E. Firdaus, Effect of time resistance and binder against Cilacap iron sand reduction, Tek J Sains dan Teknol., 14(1), 63 (2018) [Google Scholar]
  21. M. Handayani, S. Oedayani, A. Milandia, The Effect of Temperature and Reduction Type of Acquisition of Percent Metalization Results of Iron Ore Reduction from Kalimantan, J Furn., (2016) [Google Scholar]
  22. F. Abdul, H. Wasik, Analysis of the use of several local charcoal types as reducing in the process of making iron sponges (sponge iron) of iron sand raw materials using direct reduction methods, J IPTEK, 22, 43–50 (2018) [Google Scholar]
  23. G. Li, Z. You, Y. Zhang, M. Rao, P. Wen, Y. Guo, T. Jiang, Synchronous volatilization of Sn, Zn, and As, and preparation of direct reduction iron (DRI) from a complex iron concentrate via CO reduction, 66(9), 1701–10 (2014) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.