Open Access
Issue
E3S Web Conf.
Volume 319, 2021
International Congress on Health Vigilance (VIGISAN 2021)
Article Number 01062
Number of page(s) 9
DOI https://doi.org/10.1051/e3sconf/202131901062
Published online 09 November 2021
  1. S. Sharma, V. Kumar, R.B. Tripathi, (2011). Isolation of phosphate solubilizing microorganism (PSMs) from soil. J. Mico. Biot. Res. 1, 90. [Google Scholar]
  2. J.H. Park, N.B. Bolana, M. Megharaja, R. Naidua, (2011). Isolation of phosphate solubilizing bacteria and their potential for lead immobilization in soil. J. Hazard Mater. 185, 829. https://doi.org/10.1016/j.jhazmat.2010.09.095 [Google Scholar]
  3. B. Drigo, S. Donn, (2017). Trading carbon between arbuscular mycorrhizal fungi and their hyphae-associated microbes. In: Mycorrhizal Mediation of Soil, vol 22. pp. 395. https://doi.org/10.1016/B978-0-12-804312-7.00022-X [Google Scholar]
  4. R. Hakkou, M. Benzaazoua, & B. Bussière, (2016). Valorization of Phosphate Waste Rocks and Sludge from the Moroccan Phosphate Mines: Challenges and Perspectives. Procedia Engineering, 138, 110–118. https://doi.org/https://doi.org/10.1016/j.proeng.2016.02.068. [Google Scholar]
  5. A. Roy-Bolduc, M. Hijri (2010). The use of mycorrhizae to enhance phosphorus uptake: a way out the phosphorus crisis. Biofertilizers & Biopesticides 2:104. DOI: 10.4172/2155-6202.1000104 [Google Scholar]
  6. J. M. Barea, M. Toro, M. O. Orozco, E. Campos & R. Azcón, (2002). The application of isotopic (32P and 15N) dilution techniques to evaluate the interactive effect of phosphate-solubilizing rhizobacteria, mycorrhizal fungi and Rhizobium to improve the agronomic efficiency of rock phosphate for legume crops. Nutrient Cycling in Agroecosystems, 63(1), 35–42. https://doi.org/10.1023/A:1020589732436 [Google Scholar]
  7. S. Taktek, M. Trépanier, P. Magallón-Servín, M. St-Arnaud, Y. Piché, JA. Fortin, H. Antoun (2015) Trapping of phosphate solubilizing bacteria on hyphae of the arbuscular mycorrhizal fungus Rhizophagus irregularis DAOM 197198. Soil Biol Biochem 90:1–9. https://doi.org/10.1016/j.soilbio.2015.07.016 [Google Scholar]
  8. M. Bansal, KG. Mukerji (1994). Positive correlation between VAMinduced changes in root exudation and mycorrhizosphere mycoflora. Mycorrhiza 5:39–44. https://doi.org/10.1007/BF00204018 [Google Scholar]
  9. D. L. Jones, A. Hodge, Y. Kuzyakov (2004). Plant and mycorrhizal regulation of rhizodeposition. New Phytol 163:459–480. https://doi.org/10.1111/j.1469-8137.2004.01130.x [Google Scholar]
  10. E. T. Oswald, HA. Ferchau (1968). Bacterial associations of coniferous mycorrhizae. Plant. S. 28:187–192. https://doi.org/10.1007/BF01349190 [Google Scholar]
  11. K. Mansfeld-Giese, J. Larsen, L. Bodker (2002). Bacterial populations associated with mycelium of the arbuscularmycorrhizal fungus Glomus intraradices. FEMS Microbiol Ecol 41:133–140. https://doi.org/10.1111/j.1574-6941.2002.tb00974.x [Google Scholar]
  12. J. D. He, T. Dong, H.H. Wu, Y.N. Zou, Q.S. Wu, K. Kuča (2019): Mycorrhizas induce diverse responses of root TIP aquaporin gene expression to drought stress in trifoliate orange. Scientia Horticulturae, 243: 64‒69. https://doi.org/10.1016/j.scienta.2018.08.010 [Google Scholar]
  13. Q. S. Wu, J.D. He, A.K. Srivastava, F. Zhang, Y.N. Zou (2019): Development of propagation technique of indigenous AMF and their inoculation response in Citrus. Indian J. of Agri. Sci, 89: 1190‒1194. [Google Scholar]
  14. F. Zhang, P. Wang, Y.N. Zou, Q.S. Wu, K. Kuča (2019): Effects of mycorrhizal fungi on root-hair growth and hormone levels of taproot and lateral roots in trifoliate orange under drought stress. Archives of Agr. and S. Sci, 65: 1316‒1330. https://doi.org/10.1080/03650340.2018.1563780 [Google Scholar]
  15. F. Zhang, Y.N .Zou, Q.S. Wu, K. Kuča(2020): Arbuscular mycorrhizas modulate root polyamine metabolism to enhance drought tolerance of trifoliate orange. Environmental and Experimental Botany, 171: 103926. https://doi.org/10.1016/j.envexpbot.2019.103926 [Google Scholar]
  16. Duponnois et A.D. Robin (2012). LA GRANDE MURAILLE VERTE: Capitalisation des recherches et valorisation des savoirs locaux. DOI: 10.4000/books.irdeditions.3247. [Google Scholar]
  17. M. Brundrett, N. Bougher, B. Dell, T. Grove, N. Malajczuk, Working with mycorrhizas in forestry and agriculture, Australian Centre for International Agricultural Research (ACIAR), monograph 32, Canberra, Australia, 1996, 374 p. DOI: 10.13140/2.1.4880.5444 [Google Scholar]
  18. M. Ducousso. Importance des symbioses racinaires pour l’utilisation des acacias en Afrique de l’Ouest. Thèse, Université Claude Bernard, Lyon I (CIRAD-ISRA), Nogent sur Marne, France et Dakar, Sénégal, 1991, 205 p. [Google Scholar]
  19. J. M. Phillips, D.S. Hayman, Improved procedure for clearing roots and staining parasitic and vesicular-arbuscular fungi for rapid assessment of infection, Trans. Brit. Mycol. Soc. 55 (1970) 158–160. https://doi.org/10.1016/S0007-1536(70)80110-3 [Google Scholar]
  20. R. E. Koske, B. Tessier, A convenient permanent slide mounting medium, Mycological Society of America Newsletter 34 (1983) 59. [Google Scholar]
  21. A. Trouvelot, J. Kouch, V. Gianinazzi-Pearson, Les mycorhizes, physiologie et génétique, INRA, 1986, pp. 217–221. [Google Scholar]
  22. J. W. Gerdemann., T.H. Nicolson, Spores of mycorrhizal Endogone species extracted from soil by wet sieving and decanting, Trans. Brit. Mycol. Soc. 46 (1963) 235. https://doi.org/10.1016/S0007-1536(63)80079-0 [Google Scholar]
  23. C. Azcón-Aguilar, J. Palenzuela, A. Roldán, S. Bautista, R. Vallejo, J.M. Barea, Analysis of the mycorrhizal potential in the rhizosphere of representative plant species from desertification-threatened Mediterranean shrublands, Appl. Soil Ecol. 22 (2003) 29–37. https://doi.org/10.1016/S0929-1393(02)00107-5 [Google Scholar]
  24. International Culture Collection of (Vesicular) Arbuscular Mycorrhizae (INVAM) (1997), http://www.invam.caf.wvu.edu/ [Google Scholar]
  25. J. B. Morton, G.L. Benny, Revised classification of arbuscular mycorrhizal fungi (Zygomycetes): a new order, Glomales, two new suborders, Glomineae and Gigasporineae, and two new families, Acaulosporaceae and Gigasporaceae, with an emendation of Glomaceae, Mycotaxon 37 (1990) 471–491. [Google Scholar]
  26. E. Sieverding, VAM management in tropical agrosystems, Deutsche Gesellschaft fur Technische Zusammenarbeit (GTZ), Eschborn; Germany, 1991. [Google Scholar]
  27. I. Weissenhorn, C. Leyval, G. Belgy, et al. Arbuscular mycorrhizal contribution to heavy metal uptake by maize (Zea mays L.) in pot culture with contaminated soil. Myco. 5, 245–251 (1995). https://doi.org/10.1007/BF00204957. [Google Scholar]
  28. M. L. Ruiz, D. Carvajal-Sanchez & C. A. Espinosa (2016). Efecto de las micorrizas y otros biofertilizantes en papaya, guayaba y aguacate en suelos ferraliticos rojos y pardos mullidos carbonatados. Rev. Agri. Tropical Vol 2 NO. 2:21-30. [Google Scholar]
  29. R. Aroca, M. M. Alguacil, P. Vernieri, J. M. Ruiz-Lozano (2008). Plant responses to drought stress and exogenous ABA application are modulated differently by mycorrhization in tomato and an ABAdeficient mutant (Sitiens). Microb Ecol 56:704–719. https://doi.org/10.1007/s00248-008-9390-y [Google Scholar]
  30. T. Li, Y. J. Hu, Z. P. Hao, H. Li, Y. S. Wang, B. D. Chen (2013). First cloning and characterization of two functional aquaporin genes from an arbuscular mycorrhizal fungus Glomus intraradices. New Phytol 197:617–630. https://doi.org/10.1111/nph.12011 [Google Scholar]
  31. S. Bender, C. Franz, G.A. Marcel, V. D. Heijden (2015). Mycorrhizal effects on nutrient cycling, nutrient leaching and N2O production in experimental grassland. Soil Biology & Biochemistry 80 (2015) 283e292. http://dx.doi.org/10.1016/j.soilbio.2014.10.016. [Google Scholar]
  32. S. E. Smith, F. A. Smith, 2011. Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystem scales. Annual Review of Plant Biology 62, 227e250. https://doi.org/10.1146/annurev-arplant-042110-103846 [Google Scholar]
  33. G. Feng, Y. C. Song, X. L. Li, P. Christie, 2003. Contribution of arbuscular mycorrhizal fungi to utilization of organic sources of phosphorus by red clover in a calcareous soil. Applied Soil Ecology 22, 139e148. https://doi.org/10.1016/S0929-1393(02)00133-6 [Google Scholar]
  34. A. Hodge, A. H. Fitter, 2010. Substantial nitrogen acquisition by arbuscular mycorrhizal fungi from organic material has implications for N cycling. Proceedings of the National Academy of Sciences of the United States of America 107, 13754e13759. https://doi.org/10.1073/pnas.1005874107 [Google Scholar]
  35. A. Hodge (2001). Arbuscular mycorrhizal fungi influence decomposition of, but not plant nutrient capture from, glycine patches in soil. New Phytologist 151: 725–734. [Google Scholar]
  36. A. Atul-Nayyar, C. Hamel, K. Hanson, J. Germida, 2009. The arbuscular mycorrhizal symbiosis links N mineralization to plant demand. Mycorrhiza 19, 239e246. https://doi.org/10.1007/s00572-008-0215-0 [Google Scholar]
  37. L. Cheng, F. L. Booker, C. Tu, K. O. Burkey, , L. Zhou, H. D. Shew, T. W. Rufty, S. Hu, 2012. Arbuscular mycorrhizal fungi increase organic carbon decomposition under elevated CO2. Science 337, 1084e1087. https://doi.org/10.1126/science.1224304 [Google Scholar]
  38. H. J. Hawkins, A. Johansen, E. George, 2000. Uptake and transport of organic and inorganic nitrogen by arbuscular mycorrhizal fungi. Plant and Soil 226, 275e285. https://doi.org/10.1023/A:1026500810385 [Google Scholar]
  39. M. D. Whiteside, M. O. Garcia, K. K. Treseder, 2012. Amino acid uptake in arbuscular mycorrhizal plants. PloS One 7. https://doi.org/10.1371/journal.pone.0047643 [Google Scholar]
  40. M. D. Whiteside, K. K. Treseder, P. R. Atsatt, 2009. The brighter side of soils: quantum dots track organic nitrogen through fungi and plants. Ecology 90, 100e108. https://doi.org/10.1890/07-2115.1 [Google Scholar]
  41. J. H. Graham, D. M. Eissenstat, 1994. Host genotype and the formation of and function of VA mycorrhizae. Plant Soil 159, 179–185. https://doi.org/10.1007/BF00000107 [Google Scholar]
  42. K. Vinayak, D. J. Bagyaraj, 1990. Vesicular-arbuscular mycorrhizae screened for troyer citrange. Biol. Fertil. Soils 9, 311–314. [Google Scholar]
  43. A. Zaidi, M. S. Khan, M. Ahemad, M. Oves (2009). Plant growth promotion by phosphate solubilizing bacteria. Acta Microbiol. Immunol. Hung. 56, 263–284. https://doi.org/10.1556/amicr.56.2009.3.6 [Google Scholar]
  44. J. Ruan, F. Zhang, M. H. Wong (2001). Effect of nitrogen form and phosphorus source on the growth, nutrient uptake and rhizosphere soil property of Camellia sinensis L. Plant Soil 223, 63–71. https://doi.org/10.1023/A:1004882001803 [Google Scholar]
  45. Q. Yao, X. L. Li, G. Feng, P. Christie (2001). Mobilization of sparingly soluble inorganic phosphates by the external mycelium of an arbuscular mycorrhizal fungus. Plant Soil 230, 279–285. https://doi.org/10.1023/A:1010367501363 [Google Scholar]
  46. S. Joubert, E. Archer (2000). The Influence of Mycorrhiza on Vines Wynboer. A Technical Guide for Wine Producers 130. pp. 86–88. [Google Scholar]
  47. F. A. Smith, S. E. Smith, B. J. St John, D. J. D. Nicholas (1986). Inflow of N and P into roots of mycorrhizal and non-mycorrhizal onions. In: Gianinazzi-Pearson, V., Gianinazzi, S. (Eds.), Physiological and Genetical Aspects of Mycorrhizae. INRA, Paris, France, pp. 371–375. [Google Scholar]
  48. L. Ouahmane, I. Ndoye, A. Morino, A. Ferradous, Y. Sfairi, M. Al Faddy, M. Abourouh (2012). Inoculation of Ceratonia siliqua L. with native arbuscular mycorrhizal fungi mixture improves seedling establishment under greenhouse conditions. Afr. J. Biotechnol. 11, 16422–16426. DOI: 10.5897/AJB12.1163 [Google Scholar]
  49. N. Manaut, H. Sanguin, L. Ouahmane, M. Bressan, J. Thioulouse, E. Baudoin, A. Galiana, M. Hafidi, Y. Prin, R. Duponnois, 2015. Potentialities of ecological engineering strategy based on native arbuscular mycorrhizal community for improving afforestation programs with carob trees in degraded environments. Ecological Engineering 79 (2015) 113–119. http://dx.doi.org/10.1016/j.ecoleng.2015.03.007 [Google Scholar]
  50. S. E. Smith, D. J. Read, 2008. Mycorrhizal Symbiosis, third ed. Academic press, San Diego, CA, USA. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.