Open Access
Issue
E3S Web Conf.
Volume 319, 2021
International Congress on Health Vigilance (VIGISAN 2021)
Article Number 01099
Number of page(s) 7
DOI https://doi.org/10.1051/e3sconf/202131901099
Published online 09 November 2021
  1. Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. [Google Scholar]
  2. Organisation mondiale de la Santé - profils des pays pour le cancer, 2014, Maroc. [Google Scholar]
  3. Al-Hajj, Muhammad, Wicha, Max S., Benito-Hernandez, Adalberto, et al. Prospective identification of tumorigenic breast cancer cells. Proceedings of the National Academy of Sciences, 2003, vol. 100, no 7, p. 3983-3988. [Google Scholar]
  4. Robertson, Stephanie, Azizpour, Hossein, Smith, Kevin, et al. Digital image analysis in breast pathology—from image processing techniques to artificial intelligence. Translational Research, 2018, vol. 194, p. 19-35. [Google Scholar]
  5. Diebolt, Vincent, Azancot, Isaac, Boissel, François-Henri, et al. «Intelligence artificielle»: quels services, quelles applications, quels résultats et quelle valorisation aujourd’hui en recherche clinique? Quel impact sur la qualité des soins? Quelles recommandations?. Therapies, 2019, vol. 74, no 1, p. 141-154. [Google Scholar]
  6. Ngo, Vivian, Degan, Mona, Ho, Eugene, et al. Evaluation of the united states preventative services task force screening guidelines for breast cancer in a Hispanic underserved population. Cureus, 2020, vol. 12, no 5. [Google Scholar]
  7. Vabalas, Andrius, Gowen, Emma, Poliakoff, Ellen, et al. Machine learning algorithm validation with a limited sample size. PloS one, 2019, vol. 14, no 11, p. e0224365. [Google Scholar]
  8. Mazurowski, Maciej A., Habas, Piotr A., Zurada, Jacek M., et al. Training neural network classifiers for medical decision-making: The effects of imbalanced datasets on classification performance. Neural networks, 2008, vol. 21, no 2-3, p. 427-436. [Google Scholar]
  9. Jiménez-Gaona, Yuliana, Rodríguez-Álvarez, María José, et Lakshminarayanan, Vasudevan. Deep-Learning-Based Computer-Aided Systems for Breast Cancer Imaging: A Critical Review. Applied Sciences, 2020, vol. 10, no 22, p. 8298. [Google Scholar]
  10. Swiderski, Bartosz, Kurek, Jaroslaw, Osowski, Stanislaw, et al. Deep learning and non- negative matrix factorization in recognition of mammograms. In: Eighth International Conference on Graphic and Image Processing (ICGIP 2016). International Society for Optics and Photonics, 2017. p. 102250B. [Google Scholar]
  11. Debelee, Taye Girma, Schwenker, Friedhelm, Ibenthal, Achim, et al. Survey of deep learning in breast cancer image analysis. Evolving Systems, 2020, vol. 11, no 1, p. 143-163. [Google Scholar]
  12. Rawat, Waseem et Wang, Zenghui. Deep convolutional neural networks for image classification: A comprehensive review. Neural computation, 2017, vol. 29, no 9, p. 2352-2449. [Google Scholar]
  13. Alkhaleefah, Mohammad et Wu, Chao-Cheng. A hybrid CNN and RBF-based SVM approach for breast cancer classification in mammograms. In : 2018 IEEE International Conference on Systems, Man, and Cybernetics (SMC). IEEE, 2018. p. 894-899. [Google Scholar]
  14. Statnikov, Alexander. A gentle introduction to support vector machines in biomedicine: Theory and methods. world scientific, 2011. [Google Scholar]
  15. Peterson, Leif E. K-nearest neighbor. Scholarpedia, 2009, vol. 4, no 2, p. 1883. [Google Scholar]
  16. Gallego, Antonio-Javier, Calvo-Zaragoza, Jorge, et Rico-Juan, Juan Ramón. Insights into efficient k-nearest neighbor classification with convolutional neural codes. IEEE Access, 2020, vol. 8, p. 99312-99326 [Google Scholar]
  17. Gallego, Antonio-Javier, Pertusa, Antonio, et Calvo-Zaragoza, Jorge. Improving convolutional neural networks’ accuracy in noisy environments using k-nearest neighbors. Applied Sciences, 2018, vol. 8, no 11, p. 2086 [Google Scholar]
  18. Xu, Yun et Goodacre, Royston. On splitting training and validation set: A comparative study of cross- validation, bootstrap and systematic sampling for estimating the generalization performance of supervised learning. Journal of Analysis and Testing, 2018, vol. 2, no 3, p. 249-262. [Google Scholar]
  19. Sokolova, Marina et Lapalme, Guy. A systematic analysis of performance measures for classification tasks. Information processing & management, 2009, vol. 45, no 4, p. 427-437 [Google Scholar]
  20. Oliveira, Júlia EE, Gueld, Mark O., Araújo, Arnaldo de A., et al. Toward a standard reference database for computer-aided mammography. In : Medical imaging 2008: Computer-aided diagnosis. International Society for Optics and Photonics, 2008. p. 69151Y. [Google Scholar]
  21. Rumbold, John Mark Michael et Pierscionek, Barbara. The effect of the general data protection regulation on medical research. Journal of medical Internet research, 2017, vol. 19, no 2, p. e47. [Google Scholar]
  22. Ngo, Vivian, Degan, Mona, Ho, Eugene, et al. Evaluation of the united states preventative services task force screening guidelines for breast cancer in a Hispanic underserved population. Cureus, 2020, vol. 12, no 5. [Google Scholar]
  23. Ramadan, Saleem Z. Methods used in computer-aided diagnosis for breast cancer detection using mammograms: a review. Journal of healthcare engineering, 2020, vol. 2020. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.