Open Access
Issue
E3S Web Conf.
Volume 319, 2021
International Congress on Health Vigilance (VIGISAN 2021)
Article Number 01109
Number of page(s) 5
DOI https://doi.org/10.1051/e3sconf/202131901109
Published online 09 November 2021
  1. P.C. Nagajyoti, K.D. Lee, T.V.M. Sreekanth, Heavy metals, occurrence and toxicity for plants: a review. Environmental chemistry letters, 8(3), 1(2010) [Google Scholar]
  2. Z.L He., X.E. Yang, P.J. Stoffella, Trace elements in agroecosystems and impacts on the environment. Journal of Trace elements in Medicine and Biology, 19(2-3), 125–140. (2005) [Google Scholar]
  3. H. Marschner, Marschner’s mineral nutrition of higher plants. Academic press. (2011) [Google Scholar]
  4. S. Kaur, M.R. Kamli, & A. Ali, Role of arsenic and its resistance in nature. Canadian Journal of Microbiology, 57(10), 769–774. (2011) [Google Scholar]
  5. S. Afshan, S. Ali, S.A. Bharwana, M. Rizwan, M. Farid, F. Abbas, ... & G.H. Abbasi, Citric acid enhances the phytoextraction of chromium, plant growth, and photosynthesis by alleviating the oxidative damages in Brassica napus L. Environmental Science and Pollution Research, 22 (15), 11679–11689. (2015) [Google Scholar]
  6. S.M. Prasad, R. Dwivedi, M. Zeeshan, Growth, photosynthetic electron transport, and antioxidant responses of young soybean seedlings to simultaneous exposure of nickel and UV-B stress. Photosynthetica, 43(2), 177–185. (2005) [Google Scholar]
  7. T. Ghnaya, H. Zaier, R. Baioui, S. Sghaier, G. Lucchini, G.A. Sacchi, ... & C. Abdelly, Implication of organic acids in the long-distance transport and the accumulation of lead in Sesuvium portulacastrum and Brassica juncea. Chemosphere, 90(4), 1449–1454. (2013) [Google Scholar]
  8. L. Rastgoo, A. Alemzadeh, Biochemical responses of Gouan (‘Aeluropus littoralis’) to heavy metals stress. Australian Journal of Crop Science, 5(4), 375. (2011) [Google Scholar]
  9. L. Marchiol, S. Assolari, P. Sacco, G. Zerbi, Phytoextraction of heavy metals by canola (Brassica napus) and radish (Raphanus sativus) grown on multicontaminated soil. Environmental Pollution, 132(1), 21–27. (2004) [Google Scholar]
  10. M. Bouhadi, A. Ainane, E.L. M’hammed, M. Talbi, O. Cherifi, A. El Yaacoubi, & T. Ainane, Role of the macroalgae Corallina officinalis in alleviating the toxicity of hexavalent chromium on Vicia faba L. Journal of Analytical Sciences and Applied Biotechnology, 1(2), 1–2 (2019). [Google Scholar]
  11. H.K. Lichtenthaler Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. In Methods in enzymology (Vol. 148, pp. 350–382). Academic Press. (1987) [Google Scholar]
  12. M. Dubois, K.A. Gilles, J.K. Hamilton, P.T. Rebers, F. Smith, Colorimetric method for determination of sugars and related substances. Analytical chemistry, 28 (3), 350–356. (1956) [Google Scholar]
  13. O.H. Lowry, N.J. Rosebrough, A.L. Farr, R.J. Randall, Protein measurement with the Folin phenol reagent. Journal of biological chemistry, 193, 265–275. (1951) [Google Scholar]
  14. L.S. Bates, R.P. Waldren, I.D. Teare, Rapid determination of free proline for water-stress studies. Plant and soil, 39 (1), 205–207. (1973) [Google Scholar]
  15. L.S. Clesceri, A.E. Greenberg, A.D. Eaton, Standard Methods for the Examination of Water and Wastewater, A. P. H. Association, Washington. 366. (1998) [Google Scholar]
  16. A. Khadraji, M. Bouhadi, and C. Ghoulam, (2020). Effect of Soil Available Phosphorus Levels on Chickpea(Cicer arietinum L.) -Rhizobia Symbiotic Association. Legume Research. 43(6): 878–883. [Google Scholar]
  17. R. Solanki, R. Dhankhar, (2011) Biochemical changes and adaptive strategies of plants under heavy metal stress. Biologia, 66(2), 195–204. [Google Scholar]
  18. J.R. Peralta, J.L. Gardea-Torresdey, K.J. Tiemann, E. Gomez, S. Arteaga, E. Rascon, J.G. Parsons, Uptake and effects of five heavy metals on seed germination and plant growth in alfalfa (Medicago sativa L.). Bulletin of Environmental Contamination and toxicology, 66(6), 727–734. (2001) [Google Scholar]
  19. M. Di Salvatore, A.M. Carafa, G. Carratù, Assessment of heavy metals phytotoxicity using seed germination and root elongation tests: a comparison of two growth substrates. Chemosphere, 73 (9), 1461–1464. (2008) [Google Scholar]
  20. J. Bae, D.L. Benoit, A.K. Watson, Effect of heavy metals on seed germination and seedling growth of common ragweed and roadside ground cover legumes. Environmental pollution, 213, 112–118. (2016) [Google Scholar]
  21. S. Gul, M.F. Nawaz, M. Azeem, Interactive effects of salinity and heavy metal stress on ecophysiological responses of two maize (Zea mays L.) cultivars. FUUAST Journal of Biology, 6(1), 81–87. (2016) [Google Scholar]
  22. Y.Y. Wang, Y. Wang, G.Z. Li, L. Hao, Salicylic acid-altering Arabidopsis plant response to cadmium exposure: Underlying mechanisms affecting antioxidation and photosynthesis-related processes. Ecotoxicology and environmental safety, 169, 645–653 (2019). [Google Scholar]
  23. K. Viehweger, How plants cope with heavy metals. Botanical Studies, 55(1), 35. (2014) [Google Scholar]
  24. Y.L. Chen, X.Q. Hong, H. He, H.W. Luo, Qian T.T., R.Z. Li, ... & H.Q. Yu, Biosorption of Cr (VI) by Typha angustifolia: mechanism and responses to heavy metal stress. Bioresource technology, 160, 89–92. (2014) [Google Scholar]
  25. A.B. Jha, R.S. Dubey, Carbohydrate metabolism in growing rice seedlings under arsenic toxicity. Journal of plant physiology, 161(7), 867–872. (2004) [Google Scholar]
  26. N. Estrella-Gómez, D. Mendoza-Cózatl, R. Moreno-Sánchez, D. González-Mendoza, O. Zapata-Pérez, A. Martínez-Hernández, J.M. Santamaría., The Pb-hyperaccumulator aquatic fern Salvinia minima Baker, responds to Pb2+ by increasing phytochelatins via changes in SmPCS expression and in phytochelatin synthase activity. Aquatic Toxicology, 91 (4), 320–328. (2009) [Google Scholar]
  27. S. Mishra Srivastava, S.R.D. Tripathi, R. Kumar, C.S. Seth, D.K. Gupta, Lead detoxification by coontail (Ceratophyllum demersum L.) involves induction of phytochelatins and antioxidant system in response to its accumulation. Chemosphere, 65(6), 1027–1039. (2006) [Google Scholar]
  28. N.F. Aldoobie, M.S. Beltagi, Physiological, biochemical and molecular responses of common bean (Phaseolus vulgaris L.) plants to heavy metals stress. African Journal of Biotechnology, 12 (29). (2013) [Google Scholar]
  29. K.R. Sheetal, S.D. Singh, A. Anand, Prasad S., Heavy metal accumulation and effects on growth, biomass and physiological processes in mustard. Indian Journal of Plant Physiology, 21(2), 219–223. (2016) [Google Scholar]
  30. V. Singh, B.N. Tripathi, & V. Sharma, Interaction of Mg with heavy metals (Cu, Cd) in T. aestivum with special reference to oxidative and proline metabolism. Journal of plant research, 129(3), 487–497. (2016) [Google Scholar]
  31. M.P. Mourato, I.N. Moreira, I. Leitão, F.R. Pinto, J.R. Sales, L.L. Martins, Effect of heavy metals in plants of the genus Brassica. International journal of molecular sciences, 16(8), 17975–17998. (2015) [Google Scholar]
  32. A. Sasmaz, E. Obek, H. Hasar, The accumulation of heavy metals in Typha latifolia L. grown in a stream carrying secondary effluent. ecological engineering, 33(3-4), 278–284. (2008) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.