Open Access
Issue
E3S Web Conf.
Volume 321, 2021
XIII International Conference on Computational Heat, Mass and Momentum Transfer (ICCHMT 2021)
Article Number 03007
Number of page(s) 9
Section Modeling and Simulation
DOI https://doi.org/10.1051/e3sconf/202132103007
Published online 11 November 2021
  1. Y. Li, F. Qi, H. Guo, Z. Guo, M. Li, W. Wu, Case Stud. Therm. Eng., 13, 100387, (2019). [Google Scholar]
  2. M. Hou, Y. Hu, J. Zhang, H. Cao, Z. Wang, Electrochim. Acta, 347, 136280, (2020). [Google Scholar]
  3. F. Bahiraei, M. Ghalkhani, A. Fartaj, G-A Nazri, Appl. Therm. Eng., 125, 904, (2017). [Google Scholar]
  4. K. Darcovich, D. D. MacNeil, S. Recoskie, B. Kenney, Appl. Therm. Eng., 133, 566, (2018). [Google Scholar]
  5. Z. An, L. Jia, L. Wei, C. Dang, Q. Peng, Appl. Therm. Eng., 137, 792, (2018). [Google Scholar]
  6. G. Jiang, L. Zhuang, Q. Hu, Z. Liu, J. Huang, Appl. Therm. Eng., 171, 115080, (2020). [Google Scholar]
  7. Y. Huang, H. Lai, Appl. Therm. Eng., 157, 113744, (2019). [Google Scholar]
  8. M. Xu, Z. Zhang, X. Wang, L. Jia, L. Yang, Energy, 80, 303, (2015). [Google Scholar]
  9. D-C Lee, C-W Kim, J. Power Sources, 475, 228678, (2020). [Google Scholar]
  10. M. Mastali, E. Foreman, A. Modjtahedi, E. Samadani, A. Amirfazli, S. Farhad, R. A. Fraser, M. Fowler, Int. J. Therm. Sci., 129, 218, (2018). [Google Scholar]
  11. P. Nie, S-W Zhang, A. Ran, C. Yang, S. Chen, Z. Li, X. Zhang, W. Deng, T. Liu, F. Kang, G. Wei, Appl. Therm. Eng., 184, 116258, (2021). [Google Scholar]
  12. D. H. Jeon, Curr. Appl. Phys., 14, 196, (2014). [Google Scholar]
  13. X. Han, Y. Huang, H. Lai, Appl. Therm. Eng., 147, 908, (2019). [Google Scholar]
  14. J. Chiew, C. S. Chin, W. D. Toh, Z. Gao, J. Jia, C. Zhang, Appl. Therm. Eng., 147, 450, (2019). [Google Scholar]
  15. M. Xu, Z. Zhang, X. Wang, L. Jia, L. Yang, J. Power Sources, 256, 233, (2014). [Google Scholar]
  16. XR Kong, B. Wetton, B. Gopaluni, IFAC-PapersOnline, 52 (1), 946, (2019). [Google Scholar]
  17. L. Cai, R. E. White, J. Power Sources, 196, 5985, (2011). [Google Scholar]
  18. R. Bubbico, V. Greco, C. Menale, Safety Science, 108, 72, (2018). [Google Scholar]
  19. H. Liu, Z. Wei, W. He, J. Zhao, Energy Convers. Manag., 150, 304, (2017). [Google Scholar]
  20. M. Doyle, T.F. Fuller, J. Newman, J. Electrochem. Soc. 140 (6), 1526, (1993). [Google Scholar]
  21. J. Newman, W. Tiedemann, AIChE J., 21 (1), 25, (1975). [Google Scholar]
  22. D. Bernardi, E. Pawlikowski, J. Newman, J. Electrochem. Soc., 132 (1), 5, (1985). [Google Scholar]
  23. Y. Xie, W. Li, Y. Yang, F. Feng, Int. J. Energy Res., 42, 4481, (2018). [Google Scholar]
  24. M. Hagen, D. Hanselmann, K. Ahbrecht, R. Maça, D. Gerber, J. Tübke, Adv. Energy Mater., 5, 1401986, (2015). [Google Scholar]
  25. D. Krsmanovic, Development of a property forecast tool for flexible compositions of Li-ion batteries, including raw material availability and price forming, Master Thesis, Uppsala University, (2019). [Google Scholar]
  26. V. R. Subramanian, V. Boovaragavan, V. Ramadesigan, M. Arabandi, J. Electrochem. Soc., 156 (4), A260, (2009). [Google Scholar]
  27. M. Doyle, Y. Fuentes, J. Electrochem. Soc., 150 (6), A706, (2003). [Google Scholar]
  28. H. Kondo, N. Baba, Y. Makimura, Y. Itou, T. Kobayashi, J. Power Sources, 448, 227464, (2020). [Google Scholar]
  29. J. Christensen, V. Srinivasan, John Newman, J. Electrochem. Soc., 153 (3), A560, (2006). [Google Scholar]
  30. S. Brown, N. Mellgren, M. Vynnycky, G. Lindbergha, J. Electrochem. Soc., 155 (4), A320, (2008). [Google Scholar]
  31. K. Kumaresan, G. Sikha, R. E. White, J. Electrochem. Soc., 155 (2), A164, (2008). [Google Scholar]
  32. T. F. Fuller, M. Doyle, J. Newman, J. Electrochem. Soc., 141 (1), 1, (1994). [Google Scholar]
  33. P. Albertus, J. Christensen, J. Newman, J. Electrochem. Soc., 156 (7, A606, (2009). [Google Scholar]
  34. Y. Dai, L. Cai, R. E. White, J. Power Sources 247, 365, (2014). [Google Scholar]
  35. S. G. Stewart, V. Srinivasan, J. Newman, J. Electrochem. Soc., 155 (9), A664, (2008). [Google Scholar]
  36. T. G. Zavalis, M. Behm, G. Lindbergh, J. Electrochem. Soc.”, 159 (6), A848, (2012). [Google Scholar]
  37. COMSOL Multiphysics Reference Manual, version 5.4”, COMSOL, Inc, www.comsol.com. [Google Scholar]
  38. E. Gümüşsu, Ö. Ekici, M. Köksal, Appl. Therm. Eng., 120, 484, (2017). [Google Scholar]
  39. R. Gerver, J. Meyers, J. Electrochem. Soc., 158 (7), A835, (2011). [Google Scholar]
  40. R. Amin, D. B. Ravnsbæk, Y-M Chianga, J. Electrochem. Soc., 162 (7), A1163, (2015). [Google Scholar]
  41. M. W. Verbrugge, Brian J. Koch, J. Electrochem. Soc., 150 (3), A374, (2003). [Google Scholar]
  42. N. Yang, X. Zhang, G. Li, D. Hua, Appl. Therm. Eng., 80, 55, (2015). [Google Scholar]
  43. MatWeb Material Property Data, accessed August 2021, <http://www.matweb.com/search/DataSheet.aspx?MatGUID=e6eb83327e534850a062dbca3bc758dc> [Google Scholar]
  44. S. C. Chen, C. C. Wan, Y. Y. Wang, J. Power Sources, 140 (1), 111, (2005). [Google Scholar]
  45. G. F. Hewitt, G. L. Shires, T.R. Bott, Process Heat Transfer, CRC Press, London, 1995. [Google Scholar]
  46. Y-S Duh, M-T Tsai, C-S Kao, J. Therm. Anal. Calorim., 127, 983, (2017). [Google Scholar]
  47. J. K. Carroll, M. Alzorgan, C. Page, A. R. Mayyas, Active Battery Thermal Management within Electric and Plug-In Hybrid Electric Vehicles, SAE Technical Paper, 2016-01-2221, (2016). [Google Scholar]
  48. M. Taffal, Electro-Thermal Modelling of Lithium-Ion Battery, Master Thesis, Polytechnic University of Turin, (2019). [Google Scholar]
  49. Nickel-Alloys.net, accessed August 2021, <https://www.nickel-alloys.net/commercially_pure_nickel.html> [Google Scholar]
  50. D. R. Baker, M. W. Verbrugge, J Electrochem. Soc., 146 (7), 2413, (1999). [Google Scholar]
  51. CRC Handbook of Chemistry and Physics, CRC Press, Cleveland, Ohio, (1977). [Google Scholar]
  52. T. Wang, K. J. Tseng, J. Zhao, Z. Wei, Appl. Energy, 134, 229, (2014). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.