Open Access
Issue
E3S Web Conf.
Volume 321, 2021
XIII International Conference on Computational Heat, Mass and Momentum Transfer (ICCHMT 2021)
Article Number 04010
Number of page(s) 6
Section Heat and Mass Transfert
DOI https://doi.org/10.1051/e3sconf/202132104010
Published online 11 November 2021
  1. Xing, W., Ullmann, A., Brauner, N., Plawsky, J., and Peles, Y. (2018). “Advancing micro-scale cooling by utilizing liquid-liquid phase separation”. In: Scientific Reports (8/1), pages 2–11. [Google Scholar]
  2. Ling, Y. Z., Zhang, X. S., Wang, F., and She, X. H. (2020). “Performance study of phase change materials coupled with three-dimensional oscillating heat pipes with different structures for electronic cooling”. In: Renewable Energy (154), pages 636–649 [CrossRef] [Google Scholar]
  3. Zhang, H., Mi, M., Miao, J., Wang, L., Chen, Y., Ding, T., Ning, X., and Huo,Y. (2017). “Development and on-orbit operation of loop heat pipes on Chinese circumlunar return and reentry spacecraft”. In: Journal of Mechanical Science and Technology (31/6), pages 2597–2605 [Google Scholar]
  4. Ghani, S., Gamaledin, S. M. A., Rashwan, M. M., and Atieh, M. A. (2018). “Experimental investigation of double-pipe heat exchangers in air conditioning applications”. In: Energy and Buildings (158), pages 801–811. [CrossRef] [Google Scholar]
  5. Wang, C., Chen, J., Qiu, S., Tian, W., Zhang, D., and Su, G. H. (2017). “Performance analysis of heat pipe radiator unit for space nuclear power reactor”.In: Annals of Nuclear Energy (103), pages 74–84. [CrossRef] [Google Scholar]
  6. Do, K. H., Kim, S. J., & Garimella, S. V. (2008). A mathematical model for analyzing the thermal characteristics of a flat micro heat pipe with a grooved wick. International Journal of Heat and Mass Transfer, 51(19-20), 4637–4650. [CrossRef] [Google Scholar]
  7. Lefèvre, F., Rullière, R., Pandraud, G., & Lallemand, M. (2008). Prediction of the temperature field in flat plate heat pipes with micro-grooves – Experimental validation. International Journal of Heat and Mass Transfer, 51(15-16), 4083–4094. [CrossRef] [Google Scholar]
  8. Odabaşı G., “Modelling of multidimensional heat transfer in a rectangular grooved heat pipe”, PhD thesis, Middle East Technical University, Ankara, Turkey, 2014 [Google Scholar]
  9. Zhang, C., Chen, Y., Shi, M. and Peterson, G.P. (2009). Optimization of Heat Pipe with Axial ‘Ω’-Shaped Micro Grooves Based on a Niched Pareto Genetic Algorithm (NPGA). Applied Thermal Engineering, vol. 29, no. 16, pp. 3340–3345 [CrossRef] [Google Scholar]
  10. Özçatalbaş, M., & Sezmen, R. A. (2020, November 16). Modeling Transient Heat Transfer and Dry-Out Phenomena in Heat Pipes Using Finite Element Analysis. Volume 11: Heat Transfer and Thermal Engineering. ASME 2020 International Mechanical Engineering Congress and Exposition. [Google Scholar]
  11. Alijani, H., Çetin, B., Akkuş, Y. and Dursunkaya, Z., (2018). Effect of design and operating parameters on the thermal performance of aluminum flat grooved heat pipes. Applied Thermal Engineering, 132, pp.174-187. [CrossRef] [Google Scholar]
  12. Atay, A., Sarıarslan, B., Kuşçu, Y., Saygan, S., Akkuş, Y., Gürer, T., … & Dursunkaya, Z. (2019). Performance assessment of commercial heat pipes with sintered and grooved wicks under natural convection. Isı Bilimi ve Tekniği Dergisi, 39(2),101-110. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.