Open Access
E3S Web Conf.
Volume 321, 2021
XIII International Conference on Computational Heat, Mass and Momentum Transfer (ICCHMT 2021)
Article Number 04011
Number of page(s) 7
Section Heat and Mass Transfert
Published online 11 November 2021
  1. Lucero-Acuña, A., Gutiérrez-Valenzuela, C.A., Esquivel, R., Guzmán-Zamudio, R. Mathematical modeling and parametrical analysis of the temperature dependency of control drug release from biodegradable nanoparticles (2019) RSC Advances, 9 (16), pp. 8728-8739. DOI: 10.1039/c9ra00821g [Google Scholar]
  2. Tamani, F., Hamoudi, M.C., Danede, F., Willart, J.-F., Siepmann, F., Siepmann, J. Towards a better understanding of the release mechanisms of caffeine from PLGA microparticles(2020) Journal of Applied Polymer Science, 137 (25), art. no. 48710. DOI: 10.1002/app.48710 [Google Scholar]
  3. Fang, Y., Zhang, N., Li, Q., Chen, J., Xiong, S., Pan, W. Characterizing the release mechanism of donepezil-loaded PLGA microspheres in vitro and in vivo(2019) Journal of Drug Delivery Science and Technology, 51, pp. 430-437. DOI: 10.1016/j.jddst.2019.03.029 [Google Scholar]
  4. Fernández-Colino, A., Bermudez, J.M., Arias, F.J., Quinteros, D., Gonzo, E. Development of a mechanism and an accurate and simple mathematical model for the description of drug release: Application to a relevant example of acetazolamide-controlled release from a bio-inspired elastin-based hydrogel(2016) Materials Science and Engineering C, 61, pp. 286-292. DOI: 10.1016/j.msec.2015.12.050 [Google Scholar]
  5. Abbasnezhad N, Bakir F, Shirinbayan M, Maurel B. New mathematical model based on the kinetic profile for the prediction of multistage drug release from delivery systems. Int J Pharm. 2020;10(2):1–8. ISSN 2249-1848 [Google Scholar]
  6. Hammad, R., Khan, I.U., Asghar, S., Khalid, S.H., Irfan, M., Khalid, I., Shah, S.U., Sabir, N., Ali, A., Yousaf, A.M., Hussain, T., Shahzad, Y., Gohar, U.F. Multistage release matrices for potential antiplatelet therapy: Assessing the impact of polymers and Sorb-Cel M® on floating, swelling, and release behavior (2020) Journal of Drug Delivery Science and Technology, 55, art. no. 101387. DOI: 10.1016/j.jddst.2019.101387 [Google Scholar]
  7. Tamani, F., Bassand, C., Hamoudi, M.C., Siepmann, [Google Scholar]
  8. Gasmi, H., Siepmann, F., Hamoudi, M.C., Danede, F., Verin, J., Willart, J.-F., Siepmann, J. Towards a better understanding of the different release phases from PLGA microparticles: Dexamethasone-loaded systems (2016) International Journal of Pharmaceutics, 514 (1), pp. 189-199. DOI: 10.1016/j.ijpharm.2016.08.032 [Google Scholar]
  9. Abbasnezhad, N., Shirinbayan, M., Tcharkhtchi, A., Bakir, F. In vitro study of drug release from various loaded polyurethane samples and subjected to different non-pulsed flow rates (2020) Journal of Drug Delivery Science and Technology, 55, art. no. 101500. DOI: 10.1016/j.jddst.2020.101500 [Google Scholar]
  10. Boggs, P.T., Tolle, J.W. Sequential Quadratic Programming (1995) Acta Numerica, 4, pp. 1-51. DOI: 10.1017/S0962492900002518 [Google Scholar]
  11. Edgar T.F., Himmelblau D.M., Lasdon L.O.S., Optimization of Chemical Process. McGraw Hill Companies Inc.: NewYork, NY, USA, 2001 [Google Scholar]
  12. N. Abbasnezhad, N. Zirak, M. Shirinbayan, A. Tcharkhtchi, F. Bakir, On the importance of physical and mechanical properties of PLGA films during drug release, Journal of Drug Delivery Science and Technology, 2021, 102446, ISSN 1773-2247, DOI: 10.1016/j.jddst.2021.102446. [Google Scholar]
  13. Abbasnezhad, N., Zirak, N., Shirinbayan, M., Kouidri, S., Salahinejad, E., Tcharkhtchi, A., Bakir, F. Controlled release from polyurethane films: Drug release mechanisms (2021) Journal of Applied Polymer Science, 138 (12), art. no. 50083. DOI: 10.1002/app.50083 [Google Scholar]
  14. Siepmann, J., Siepmann, F. Mathematical modeling of drug dissolution (2013) International Journal of Pharmaceutics, 453 (1), pp. 12-24. DOI: 10.1016/j.ijpharm.2013.04.044 [Google Scholar]
  15. Göpferich, A. Mechanisms of polymer degradation and erosion (1996) Biomaterials, 17 (2), pp. 103-114. DOI:10.1016/0142-9612(96)85755-3 [Google Scholar]
  16. Huang X, Brazel CS. On the importance and mechanisms of burst release in matrix-controlled drug delivery systems. J Control Release. 2001;73:121–36. DOI:10.1016/S0168-3659(01)00248-6 [Google Scholar]
  17. Yahya I, Atif R, Ahmed L, Eldeen T, Omara A, Eltayeb M. Mathematical Modeling of Diffusion Controlled Drug Release Profiles from Nanoparticles. 2019;4:287–91. [Google Scholar]
  18. Permanadewi I, Kumoro A, Wardhani D, Aryanti N. Modelling of controlled drug release in gastrointestinal tract simulation. J Phys Conf Ser. 2019;1295:12063. [Google Scholar]
  19. Gasmi, H., Willart, J.-F., Danede, F., Hamoudi, M.C., Siepmann, J., Siepmann, F. Importance of PLGA microparticle swelling for the control of prilocaine release (2015) Journal of Drug Delivery Science and Technology, 30, pp. 123-132. DOI: 10.1016/j.jddst.2015.10.009 [Google Scholar]
  20. Gasmi, H., Danede, F., Siepmann, J., Siepmann, F. Does PLGA microparticle swelling control drug release? New insight based on single particle swelling studies (2015) Journal of Controlled Release, 213, art. no. 7744, pp. 120-127.DOI: 10.1016/j.jconrel.2015.06.039 [Google Scholar]
  21. Ritger, P.L., Peppas, N.A. simple equation for description of solute release I. Fickian and non-fickian release from non-swellable devices in the form of slabs, spheres, cylinders or discs (1987) Journal of Controlled Release, 5 (1), pp. 23-36. DOI:10.1016/0168-3659(87)90034-4 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.