Open Access
E3S Web Conf.
Volume 321, 2021
XIII International Conference on Computational Heat, Mass and Momentum Transfer (ICCHMT 2021)
Article Number 04013
Number of page(s) 6
Section Heat and Mass Transfert
Published online 11 November 2021
  1. O. E. Ruiz and W. Z. Black, “Evaporation of water droplets placed on a heated horizontal surface,” J. Heat Transf., vol. 124, 2002. [Google Scholar]
  2. F. Carle, S. Semenov, M. Medale, and D. Brutin, “Contribution of convective transport to evaporation of sessile droplets: empirical model,” Int. J. Therm. Sci., vol. 101, pp. 35-47, 2016. [Google Scholar]
  3. Y. Akkus, B. Cetin, and Z. Dursunkaya, “A theoretical framework for comprehensive modeling of steadily fed evaporating droplets and the validity of common assumptions,” Int. J. Therm. Sci., vol. 158, p. 106529, 2020. [Google Scholar]
  4. W. D. Ristenpart, P. G. Kim, C. Domingues, J. Wan, and H. A. Stone, Influence of substrate conductivity on circulation reversal in evaporating drops,” Phys. Rev. Lett., vol. 99, no. 23, p. 234502, 2007. [CrossRef] [PubMed] [Google Scholar]
  5. Y. Akkus, B. Qetin, and Z. Dursunkaya, “An iterative solution approach to coupled heat and mass transfer in a steadily fed evaporating water droplet,” J. Heat Transf., vol. 141, no. 3, 2019. [Google Scholar]
  6. S. Semenov, V. M. Starov, and R. G. Rubio, “Evaporation of pinned sessile microdroplets of water on a highly heat- conductive substrate: Computer simulations,” Eur. Phys. J. Spec. Top., vol. 219, no. 1, pp. 143-154, 2013. [Google Scholar]
  7. Y. Akkus, “The effect of Stefan flow on the models of droplet evaporation,” Isi Bilim Tek. Derg., vol. 40, no. 2, pp. 309-318, 2020. [Google Scholar]
  8. C. A. Ward and F. Duan, “Turbulent transition of thermocapillary flow induced by water evaporation,” Phys. Rev. E, vol. 69, no. 5, p. 056308, 2004. [CrossRef] [PubMed] [Google Scholar]
  9. X. Xu and J. Luo, “Marangoni flow in an evaporating water droplet,” Appl. Phys. Lett., vol. 91, no. 12, p. 124102, 2007. [Google Scholar]
  10. H. Hu and R. Larson, “Analysis of the effects of marangoni stresses on the microflow in an evaporating sessile droplet,” Lang- muir, vol. 21, no. 9, pp. 3972-3980, 2005. [CrossRef] [PubMed] [Google Scholar]
  11. Y. Akkus, B. Cetin, and Z. Dursunkaya, “Modeling of evaporation from a sessile constant shape droplet,” in ASME 15th International Conference on Nanochannels, Microchannels, and Minichannels, p. V001T04A004, American Society of Mechanical Engineers, 2017. [Google Scholar]
  12. B. Sobac and D. Brutin, “Thermal effects of the substrate on water droplet evaporation,” Phys. Rev. E, vol. 86, no. 2, p. 021602, 2012. [CrossRef] [PubMed] [Google Scholar]
  13. R. D. Deegan, O. Bakajin, T. F. Dupont, G. Huber, S. R. Nagel, and T. A. Witten, “Capillary flow as the cause of ring stains from dried liquid drops,” Nature, vol. 389, no. 6653, pp. 827-829, 1997. [CrossRef] [Google Scholar]
  14. H. Hu and R. G. Larson, “Evaporation of a sessile droplet on a substrate,” J. Phys. Chem. B, vol. 106, no. 6, pp. 1334-1344, 2002. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.