Open Access
Issue
E3S Web Conf.
Volume 321, 2021
XIII International Conference on Computational Heat, Mass and Momentum Transfer (ICCHMT 2021)
Article Number 04014
Number of page(s) 6
Section Heat and Mass Transfert
DOI https://doi.org/10.1051/e3sconf/202132104014
Published online 11 November 2021
  1. G. Biswas, M. Breuer, F. Durst, Backward-facing step flows for various expansion ratios at low and moderate Reynolds number, Journal of Fluids Engineering, 126: pp362-374,(2004) [CrossRef] [Google Scholar]
  2. B.F. Armaly, F. Durst, J.C.F. Pereira, B. Schonung, Experimental and theoretical investigation of backward-facing step flow, Journal of Fluid Mechanics, 127: pp473-496,(1983) [CrossRef] [Google Scholar]
  3. H.F., Oztop. Mushatet. K.S., I. Yllmaz, Analysis of turbulent flow and heat transfer over a double forward facing step with obstacles, International Communications in Heat and Mass Transfer, 39(9):pp1395-1403, (2012). [Google Scholar]
  4. V. SriHarsha S.V. Prabhu, R.P. Vedula, Influence of rib height on the local heat transfer distribution and pressure drop in a square channel with 90° continuous and 60° V-broken ribs,Applied Thermal Engineering, 29(11-12):pp2444-2459, (2009). [PubMed] [Google Scholar]
  5. H. Togun, R. Homod, T. Abdulrazzaq, HYBRID AL2O3-CU/WATER NANOFLUID FLOW AND HEAT TRANSFER OVER VERTICAL DOUBLE FORWARD-FACING STEP, Thermal science, 5A, (2021). [Google Scholar]
  6. P. Promyoog, Heat transfer and pressure drop in a channel with multiple 60° V-baffles, International Communications in Heat and Mass Transfer, 37(7):pp835-840, (2010). [Google Scholar]
  7. H. Togun, Hakim, S.Sultan, Irfan Anjum, S.N. Kazi, An experimental study of turbulent heat transfer separation external in an annular passage, International Conference on Applications and Design in Mechanical Engineering (ICADME 2009), Universiti Malaysia Perlis (UniMAP) (2009). [Google Scholar]
  8. M. SHERRY, LO JACOO:D. & SHERIDAN J, An experimental investigation of the recirculation zone formed downstream of a forward facing step. J. Wind Engng. Ind. Aerodyn 98:pp. 888-894, (2010). [CrossRef] [Google Scholar]
  9. H. Togun, S.N. Kazi, A. Badarudin, A Review of Experimental Study of Turbulent Heat Transfer in Separated Flow, Australian Journal of Basic and Applied Sciences, 5, pp.489-505, (2011) [Google Scholar]
  10. D. LANZERSTORFER & H.C. KUHLMANN, Three-dimensional instability of the flow over a forward-facing step, J. Fluid Mech. 695:pp. 3904., (2012). [Google Scholar]
  11. H. Togun. Y.K. Salman, H.S. Sultan Aljibori and S.N. Kazi, An experimental study of heat transfer to turbulent separation fluid flow in an annular passage, International Journal of Heat and mass Transfer, 54(4):pp766-773, (2011). [PubMed] [Google Scholar]
  12. A. Gupta, V. SriHarsha, S.V. Prabhu, RP. Vedula Local heat transfer distribution in a square channel with 90° continuous, 90° saw tooth profiled and 60° broken ribs, Experimental Thermal and Fluid Science, 32(4}:pp.997-1010, (2008). [CrossRef] [Google Scholar]
  13. C.S. Oon, H. Togun, S.N. Kazi, A. Badarudin and E. Sadeghinezhad, Computational simulation of heat transfer to separation fluid flow in an annular passage, International Communications in Heat and Mass Transfer, 46:pp92-96, (2013). [Google Scholar]
  14. D. Lanzerstorfer and H.C. Kuhlmann, Three-dimensional instability of the flow over a forward-facing step, J. Fluid Mech., 695:pp390-404, (2012). [CrossRef] [Google Scholar]
  15. T. Hussein, S.N. Kazi, Abdul Amir H. Kadhum, A.Badarudin, MK.A. Ariffin. E. Sadeghinezhad Numerical Study of Turbulent Heat Transfer in Separated Flow:Review, International Review of Mechanical Engineering (IREME) 7: pp337-349, (2013). [Google Scholar]
  16. M. Sherry, Lo. Jacono,D. & Sheridan, J., An experiment al investigation of the recirculation zone formed downstream of a forward facing step. J. wind Engng Ind. Aerodyn. 98:pp888-894, (2010). [CrossRef] [Google Scholar]
  17. H. Togun, T. Abdulrazzaq, S.N. Kazi, A. Badarudin and MKA. Ariffin, Heat Transfer to Laminar Flow over a Double Backward v-Facing Step” International Journal of Mechanical, Industrial Science and Engineering, 7(2):pp 673-678, (2013). [Google Scholar]
  18. H. Hattori. and Y. Nagano, Investigation of turbulent boundary layer over forwardfacing step via direct numerical simulation, Intl J Heat Fluid Flow 31(3):pp284-294, (2010). [CrossRef] [Google Scholar]
  19. H. Togun., T. Abdulrazzaq, S.N. Kazi, M.K.A. Arifiin, Numerical study of turbulent heat transfer in annular pipe with sudden contraction, Applied mechanics and materials 465-466:pp461-466, (2014). [Google Scholar]
  20. T. Hussein, Abu-Mulaweh, S.N. Kazi, A. Badarudin., Numerical simulation of heat transfer and separation Al2O3/nanofluid flow in concentric annular pipe: International Communications in Heat and Mass Transfer, 71:pp108-117, (2016). [Google Scholar]
  21. T. Abdulrazzaq, T. Hussein, M. Goodarzi, SN Kazi, MKA. Ariffiin, NM Adam, Kamel Hooman, Turbulent heat transfer and nanofluid flow in an annular cylinder with sudden reduction, Journal of Thermal Analysis and Calorimetry, 141:pp373-385, (2020). [CrossRef] [Google Scholar]
  22. T. Abdulrazzaq, H. Togun, S. M. Reza, SN Kazi, MKA Ariffin, NM Adam, Effect of flow separation of TiO2 nanofluid on heat transfer in the annular space of two concentric cylinders, Thermal Science, 24:pp1007-1018, (2020). [CrossRef] [Google Scholar]
  23. T. Hussein, Laminar CuO-water nano-fluid flow and heat transfer in a backward-facing step with and without obstacle, Applied Nanoscience, 6(3):pp371-378, (2016). [Google Scholar]
  24. T. Abdulrazzaq, Hussein T., H. Alsulami, M. Goodarzi, M.R., Safaei, Heat Transfer Improvement in a Double Backward-Facing Expanding Channel Using Different Working Fluids, Symmetry, 12(7):pp1-23, (2020). [Google Scholar]
  25. T. Hussein, S.N. Kazi, A Badarudin, Turbulent heat transfer to separation flow in annular concentric [Google Scholar]
  26. S. Salman, Abd Rahim Abu Talib, Numerical study on the turbulent mixed convection heat transfer over 20 Microscale backward facing step, CFD Letters, 11(10):pp31-45, (2019). [Google Scholar]
  27. H. Togun, Experimental and numerical study of heat transfer to nanofluid flow in sudden enlargement of annular concentric pipe, PhD thesis, University of Malay, (2015). [Google Scholar]
  28. M. Hassan, R Sadri, G. Ahmadi, M. Dahari, S.N. Kazi, M.R., Safaei. E. Sadeghigezhad, Numerical Study of Entropy Generation in a Flowing nanofluid used in Micro- and Minichannels, Entropy, 15(1):pp144-155, (2013). [CrossRef] [Google Scholar]
  29. A.Sh. Kherbeet. H.A Mohammed, K.M. Munisamy, B.H. Salman, Combined convection nanofluid flow and heat transfer over microscale forward-facing step, Int. l Nanoparticle 6 (4):pp. 350-365, (2013). [CrossRef] [Google Scholar]
  30. ASh. Kherbeet, H.A Mohammed, K.M. Munisamy, R. Saidur, B.H. Salman, I.M. Mahbubl, Experimental and numerical study of nanofluid flow and heat transfer over microscale forward-facing step, International communication in heat and mass transfer, 57: pp319-329, (2014). [Google Scholar]
  31. T. Hussein AJ. Shkarah, S.N. Kazi, A. Badarudin, CFD simulation of heat transfer and turbulent fluid flow over a double forward-facing step, Mathematical Problems in Engineering, 2013:pp1-10, (2013). [Google Scholar]
  32. H. Togun., G. Ahmadi, T. Abdulrazzaq, AJ. Shkarah, S.N. Kazi, A. Badarudin, Thermal performance of nanofluid in ducts with double forward-facing step, Journal of the Taiwan Institute of Chemical Engineers, 47:pp28-42, (2015). [CrossRef] [Google Scholar]
  33. M.R. Safaei, T. Hussein, K Vafai, S.N. Kazi, A Badarudin, Investigation of heat transfer enhancement in a forward-facing contracting channel using FMWCNT Numerical Heat Transfer, Part A: Applications, 66:pp1321-1340, (2014). [CrossRef] [Google Scholar]
  34. R.S. Vajih, D.K. Das, Experimental determination of thermal conductivity of three and development of new correlations, International Journal of Heat and Mass Transfer, 52(21-22):pp4675-4682, (2009). [PubMed] [Google Scholar]
  35. Y. Xuan, W. RoetzeL, Conceptions for heat transfer correlation of nanofluids International Journal of Heat and mass Transfer, 43 (19)pp.3701-3707, (2000). [Google Scholar]
  36. H. L. B.-X Wang, X.F. Peng, Research on the heat-conduction enhancement for liquid with particle suspensions, General Paper (G-1), International Symposium on Thermal Science and Engineering (TSE2002), Beijing, (2000). [Google Scholar]
  37. H.C. Brinkman, The Viscosity of Concentrated Suspensions and Solutions, The Journal of Chemical Physics, 20(4):pp571-571, (1952). [CrossRef] [Google Scholar]
  38. K.G. Herrmann Schlichting, Boundary-Layer Theory, Springer, Berlin, Heidelberg, (2017). [CrossRef] [Google Scholar]
  39. Launder, B. E.; Sharma, B. I., Application of the energy-dissipation model of turbulence to the calculation of flow near a spinning disc, Letters in Heat and Mass Transfer, 1:pp131-137, (1974). [CrossRef] [Google Scholar]
  40. A.A. Al–aswadi, H.A. Mohammed, NH. Shuaib, A. Campo, Laminar forced convection flow over a backward facing step using nanofluid International Communications in Heat and Mass Transfer, 37(8):PP950-957, (2010). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.