Open Access
Issue
E3S Web Conf.
Volume 321, 2021
XIII International Conference on Computational Heat, Mass and Momentum Transfer (ICCHMT 2021)
Article Number 04019
Number of page(s) 7
Section Heat and Mass Transfert
DOI https://doi.org/10.1051/e3sconf/202132104019
Published online 11 November 2021
  1. Shi-qiong Xu, Lie Xu, Dong-quan Deng. Experimental investigation on the performance of air cooler under frosting conditions[J]. Applied thermal engineering: Design, processes, equipment, economics,2003,23(7):905-912. [Google Scholar]
  2. Caglayan, Akin, Konukman, Alp Er S., Bayrak, Ergin. Experimental investigation of the effect of air velocity on a unit cooler under frosting condition: a case study[J]. Heat and mass transfer,2017,53(10):3119-3128. [CrossRef] [Google Scholar]
  3. Zhongliang Liu, Xinhua Zhang, Sheng Meng, et al.An experimental study on minimizing frost deposition on a cold surface under natural convection conditions by use of a novel anti-frosting paint. Part I. Anti-frosting performance and comparison with the uncoated metallic surface[J]. International Journal of Refrigeration,2006,29(2):229-236. [Google Scholar]
  4. Dang, Chaobin,Song, Mengjie.Review on the measurement and calculation of frost characteristics[J].International Journal of Heat and Mass Transfer,2018,124:586-614. [CrossRef] [Google Scholar]
  5. Mohammad Rafati Nasr, Melanie Fauchoux, Robert W. Besant, et al.A review of frosting in air-to-air energy exchangers[J].Renewable & sustainable energy reviews,2014,30(Feb.):538-554. [CrossRef] [Google Scholar]
  6. Wu, Xiaomin,Chu, Fuqiang,Wang, Lingli.Meltwater Evolution during Defrosting on Superhydrophobic Surfaces[J].ACS applied materials & interfaces,2018,10(1):1415-1421. [PubMed] [Google Scholar]
  7. Lee YB., Ro ST.Frost formation on a vertical plate in simultaneously developing flow[J].Experimental Thermal and Fluid Science: International Journal of Experimental Heat Transfer, Thermodynamics, and Fluid Mechanics,2002,26(8):939-945. [Google Scholar]
  8. Experimental study on the frosting characteristics of round tube in confined circular flow path at low temperature[J]. Applied thermal engineering: Design, processes, equipment, economics,2020,171. [Google Scholar]
  9. Chin-Hsiang Cheng, Keng-Hsien Wu.Observations of Early-Stage Frost Formation on a Cold Plate in Atmospheric Air Flow[J].Journal of heat transfer: Transactions of the ASME,2003,125(1):95-102. [CrossRef] [Google Scholar]
  10. Lee, J., Domanski, P. A.Impact of air and refrigerant maldistributions on the performance of finned-tube evaporators with R-22 and R-407C. Final Report[R]. [Google Scholar]
  11. Yeun-Jong Wu, Jian-Yuan Lin, Wei-Mon Yan, et al.Performance of finned tube heat exchangers operating under frosting conditions[J].International Journal of Heat and Mass Transfer,2003,46(5):871-877. [CrossRef] [Google Scholar]
  12. Deniz Seker, Nilufer Egrican, Hakan Karatas.Frost formation on fin- and- tube heat exchangers. Part II-Experimental investigation of frost formation on fin- and- tube heat exchangers[J]. International Journal of Refrigeration,2004,27(4):375-377. [CrossRef] [Google Scholar]
  13. Z.L. Liu, Y.W. Dong, Y.X. Li, An experimental study of frost formation on cryogenic surfaces under natural convection conditions, Int. J. Heat Mass Transfer 97 (2016) 569–577. [CrossRef] [Google Scholar]
  14. Wu, Xiaomin,Chu, Fuqiang,Ma, Qiang, et al.Frost formation and frost meltwater drainage characteristics on aluminum surfaces with grooved structures[J].Applied thermal engineering: Design, processes, equipment, economics,2017,118:448-454. [Google Scholar]
  15. Liu, Zhongliang,Li, Yanxia,Dong, Yuwan.An experimental study of frost formation on cryogenic surfaces under natural convection conditions[J].International Journal of Heat and Mass Transfer,2016,97:569-577. [CrossRef] [Google Scholar]
  16. An experimental study on the air side heat transfer performance of the perforated fin-tube heat exchangers under the frosting conditions[J]. Applied thermal engineering: Design, processes, equipment, economics,2020,166. DOI: 10.1016/j.applthermaleng.2019.114634. [Google Scholar]
  17. Chiuan-Che Shiu, Chin-Hsiang Cheng. Frost formation and frost crystal growth on a cold plate in atmospheric air flow[J]. International Journal of Heat and Mass Transfer,2002,45(21):4289-4303. [CrossRef] [Google Scholar]
  18. Kim, Donghee,Kim, Chiwon,Lee, Kwan-Soo.Frosting model for predicting macroscopic and local frost behaviors on a cold plate[J].International Journal of Heat and Mass Transfer,2015,82:135-142. [CrossRef] [Google Scholar]
  19. Wu, Xiaomin,Ma, Qiang,Chu, Fuqiang, et al.Phase change mass transfer model for frost growth and densification[J].International Journal of Heat and Mass Transfer,2016,96:11-19. [CrossRef] [Google Scholar]
  20. Cardoso, Rodrigo P.,Hermes, Christian J. L.,Negrelli, Silvia.A finite-volume diffusion-limited aggregation model for predicting the effective thermal conductivity of frost[J].International Journal of Heat and Mass Transfer,2016,101:1263-1272. [CrossRef] [Google Scholar]
  21. Breque, Florent,Nemer, Maroun.Frosting modeling on a cold flat plate: Comparison of the different assumptions and impacts on frost growth predictions[J].International Journal of Refrigeration,2016,69:340-360. [CrossRef] [Google Scholar]
  22. Benitez, Teresa, Sherif, S. A.Modeling spatial and temporal frost formation with distributed properties on a flat plate using the orthogonal collocation method[J].International Journal of Refrigeration,2017,76:193-205. [CrossRef] [Google Scholar]
  23. Sommers, Andrew D., Napora, Andrew C., Truster, Nicholas L., et al.A semi-empirical correlation for predicting the frost density on hydrophilic and hydrophobic substrates[J].International Journal of Refrigeration,2017,74:313-323. [CrossRef] [Google Scholar]
  24. Zendehboudi, Alireza,Wang, Baolong,Li, Xianting.Application of smart models for prediction of the frost layer thickness on vertical cryogenic surfaces under natural convection[J].Applied thermal engineering: Design, processes, equipment, economics,2017,115:1128-1136. [Google Scholar]
  25. Ren, Lemei,Jiao, Wenling,Tian, Xinghao, et al.Effect of frost layer on heat transfer of cryogenic fluid in a finned tube[J].Cryogenics,2020,109. DOI: 10.1016/j.cryogenics.2020.103115. [Google Scholar]
  26. Dong-Keun Yang, Jung-Soo Kim, Kwan-Soo Lee.Dimensionless correlations of frost properties on a cold cylinder surface[J].International Journal of Heat and Mass Transfer,2008,51(15/16):3946-3952. [CrossRef] [Google Scholar]
  27. Mooyeon Lee, Yongchan Kim, Won Jae Yoon, et al.Frost growth characteristics of spirally-coiled circular fin-tube heat exchangers under frosting conditions[J].International Journal of Heat and Mass Transfer,2013,64:1-9. [CrossRef] [Google Scholar]
  28. Groll EA, Braun JE, Bach CK (2011) Optimizing refrigerant distribution in Evaporators. Final project report prepared for California Energy Commission, Purdue University, USA. [Google Scholar]
  29. Dietenberger M A. Generalized correlation of the water forst thermal conductivity. International Journal of Heat and Mass Transfer, 1983, 26(4):607-619. [CrossRef] [Google Scholar]
  30. Y.X. Tao, R.W.Besat, K.S.Rezkallah,A mathematical model for prediction the densification and growth of frost on a flat plate[J].International Journal of heat and mass transfer,1993,36(2):353-363. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.