Open Access
Issue
E3S Web Conf.
Volume 321, 2021
XIII International Conference on Computational Heat, Mass and Momentum Transfer (ICCHMT 2021)
Article Number 04020
Number of page(s) 8
Section Heat and Mass Transfert
DOI https://doi.org/10.1051/e3sconf/202132104020
Published online 08 December 2021
  1. Bejan, A., Entropy Generation through Heat and Fluid Flow, Wiley, New York (1982). [Google Scholar]
  2. A. Bejan, Entropy generation minimization, The new thermodynamics of finite size devices and finite time processes, Journal of Applied Physics 79, 1191, (1996). [CrossRef] [Google Scholar]
  3. H.F. Oztop, K. Al-Salem, A review on entropy generation in natural and mixed convection heat transfer for energy systems, Renewable and Sustainable Energy Reviews, Vol 16(1):pp911–920, (2012). [CrossRef] [Google Scholar]
  4. A. Sciacovelli, V. Verda, E. Sciubba, Entropy generation analysis as a design tool-A review, Renew. Sust. Energ. Rev. 43, 1167–1181, (2015). [CrossRef] [Google Scholar]
  5. K. Kumar, R. Kumar, R. Singh Bharj, Entropy generation analysis due to heat transfer and nanofluid flow through microchannels: a review, Int. J. Exergy, Vol. 31(1):pp49–86, (2020). [CrossRef] [Google Scholar]
  6. M. Cai, P. Cui, Y. Qin, D. Geng, Q. Wei, X. Wang, D. Yang, G. Zhang, Entropy Generation Methodology for Defect Analysis of Electronic and Mechanical Components-A Review, Entropy, Vol. 22(254):pp1–19, (2020). [Google Scholar]
  7. A. Hussein, K. Lioua, R. Chand, S. Sivasankaran, R. Nikbakhti, D. Li, B. Naceur and B. Habib, Three-dimensional unsteady natural convection and entropy generation in an inclined cubical trapezoidal cavity with an isothermal bottom wall, Alexandria Engineering Journal (55):pp741–755, (2016). [CrossRef] [Google Scholar]
  8. H.F. Oztop, M. A. Almeshaal, L. Kolsi, M. M. Rashidi and M. E. Ali, Natural Convection and Irreversibility Evaluation in a Cubic Cavity with Partial Opening in Both Top and Bottom Sides, Entropy 21(116), (2019). [CrossRef] [Google Scholar]
  9. Shavik, S. M. Nasim Hassan, M. Monjur Morshed, A. K. M. Quamrul Islam, Natural convection and entropy generation in a square inclined cavity with differentially heated vertical walls. Procedia Engineering (90):pp557–562, (2014). [CrossRef] [Google Scholar]
  10. O. Yejjer, L. Kolsi, Abdullah A.A.A. Al-Rashed, A. Aydi, M. N.Borjini1, H. Ben Aissia1, Numerical analysis of natural convection and entropy generation in a 3D partitioned cavity, International Journal of Heat and Technology 35 (4):pp933–943, (2017). [CrossRef] [Google Scholar]
  11. H. M. Jassim, F. H. Ali, Q. R. Al-Amir, H. K. Hamzah, S. O. W. Khafaji, Entropy Generation Analysis of a Natural Convection inside a Sinusoidal Enclosure with Different Shapes of Cylinders, Frontiers in Heat and Mass Transfer 12(22), (2019). [Google Scholar]
  12. S. M. Seyyedi, A.S. Dogonchi, M. Hashemi-Tilehnoee, M. Waqas, D. D. Ganji, Investigation of entropy generation in a square inclined cavity using control volume finite element method with aided quadratic Lagrange interpolation functions, International Communications in Heat and Mass Transfer (110):pp104–398, (2020). [Google Scholar]
  13. L. B. Erbay, Z. Altaç, B. Sülüş, An Analysis Of The Entropy Generation In A Square Enclosure, Entropy (5): pp496–505, (2003). [CrossRef] [Google Scholar]
  14. L. B. Erbay, Z. Altaç, B. Sülüş, Entropy generation in a square enclosure with partial heating from a vertical lateral wall, Heat and Mass Transfer (40):pp909–918, (2004). [CrossRef] [Google Scholar]
  15. V. Mani Rathnam, M. Roy & T. Basak, Analysis of entropy generation during natural convection in tilted triangular enclosures with various base angles, Numerical Heat Transfer, Part A: Applications 69(12):pp1332–1354, (2016). [CrossRef] [Google Scholar]
  16. M. Magherbi, H. Abbassi, and A. B. Brahim, Entropy Generation at the Onset of Natural Convection, Int. J. Heat Mass Transfer (46):pp3441–3450, (2003). [CrossRef] [Google Scholar]
  17. G.M. Ilis, M. Mobedi, B. Sunden, Effect of aspect ratio on entropy generation in a rectangular cavity with differentially heated vertical walls. International Communication in Heat Mass Transfer 35(6):pp96–703, (2008). [Google Scholar]
  18. Rejane De C. Oliveski, Mario H. Macagnan, Jacqueline B. Copetti, Entropy generation and natural convection in rectangular cavities, Applied Thermal Engineering Vol (29):pp1417–1425, (2009). [CrossRef] [Google Scholar]
  19. M. Bouabid, M. Magherbi, N. Hidouri, A. Ben Brahim, Entropy Generation at Natural Convection in an Inclined Rectangular Cavity, Entropy (13): pp1020–1033, (2011). [CrossRef] [Google Scholar]
  20. P. Karki, D. A. Perumal, A.K. Yadav, Comparative studies on air, water and nanofluids based Rayleigh–Benard natural convection using lattice Boltzmann method: CFDand exergy analysis, J Therm Anal Calorim, (2021). [Google Scholar]
  21. H. Khorasanizadeh, J. Amani, M. Nikfar, Numerical investigation of Cu-water Nano fluid natural convection and entropy generation within a cavity with an embedded conductive baffle, Scientia Iranica Transactions F, Nanotechnology 19(6):pp1996–2003, (2012). [CrossRef] [Google Scholar]
  22. Bejan, A., Convection Heat Transfer, 4th Edition, John Wiley & Sons, Chap (1): p17,Inc. Hoboken, New Jersey (2013). [Google Scholar]
  23. T. Kawamura, H.Takami, K. Kuwahara, New higher order upwind scheme for incompressible Navier-Stokes equations. Ninth International Conference on Numerical Methods in Fluid Dynamics. Lecture Notes in Physics, Vol (218): pp291–295, (1985). [CrossRef] [Google Scholar]
  24. G. de Vahl Davis, Natural Convection of Air in a Square Cavity: A Benchmark Numerical Solution, Int. J. Numer. Meth. Fluids, vol(3):pp249–264, (1983). [CrossRef] [Google Scholar]
  25. P. Nithiarasu, K. N. Seetharamu, T. Sundararajan, Natural Convective Heat Transfer in a Fluid Saturated Variable Porosity Medium, Int. J. Heat Mass Transfer, vol(40):pp3955–3967, (1997). [CrossRef] [Google Scholar]
  26. D. Santhosh Kumar, A. K. Dass, A. Dewan, Analysis of Non-Darcy Models for Mixed Convection in a Porous Cavity Using a Multigrid Approach, Numerical Heat Transfer, Part (A), Applications 56(8):pp685–708, (2009). [CrossRef] [Google Scholar]
  27. Incropera, F. P., Dewitt, D. P., Bergman, T. L., and Lavine, A. S., Fundamentals of heat and mass transfer, 6th edition, John Wiley & Sons, (2007). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.