Open Access
E3S Web Conf.
Volume 323, 2021
V International Scientific and Technical Conference Modern Power Systems and Units (MPSU 2021)
Article Number 00001
Number of page(s) 7
Published online 10 November 2021
  1. Wüstenhagen, R., Wolsink, M., Bürer, M.J., Energy Policy, Social acceptance of renewable energy innovation: An introduction to the concept., 35, 2683–2691, (2007). [Google Scholar]
  2. Panwar, N.L., Kaushik, S.C., Kothari, S., Renew. Sustain. Energy Rev., Role of renewable energy sources in environmental protection: A review., 15, 1513–1524, (2011). [Google Scholar]
  3. Dincer, I., Renew. Sustain. Energy Rev., Renewable energy and sustainable development: a crucial review., 4, 157–175, (2000). [Google Scholar]
  4. Sargunanathan, S., Elango, A., Mohideen, S.T., Renew. Sustain. Energy Rev., Performance enhancement of solar photovoltaic cells using effective cooling methods: A review, 64, 382–393, (2016). [Google Scholar]
  5. Entchev, E., Yang, L., Alexandria Eng. J., Inclusive analysis and performance evaluation of solar domestic hot water system (a case study)., 56, 201–212, (2017). [Google Scholar]
  6. Chatterjee, S., Tamizhmani, G., Conf. Rec. IEEE Photovolt. Spec. Conf., BAPV arrays: Side-by-side comparison with and without fan cooling., 38, 537542, (2012). [Google Scholar]
  7. Bashir M.A., Ali H.M., Amber K.P., Bashir M.W., Ali H., Imran S., et al., Thermal Science, Performance Investigation of Photovoltaic Modules by Back Surface Water Cooling, 22, 2401–2411, (2018). [Google Scholar]
  8. Simon, M., Meyer, E.L., Sol. Energy Mater. Sol. Cells, Detection and analysis of hot-spot formation in solar cells., 94, 106–113, (2010). [Google Scholar]
  9. Swapnil Dubey, Jatin Narotam Sarvaiya, Bharath Seshadri, Energy Procedia, Temperature Dependent Photovoltaic (PV) Efficiency and Its Effect on PV Production in the World - A Review, 33, 311–321, (2013). [Google Scholar]
  10. Amin, N., Lung, C.W., Sopian, K., Renew. Energy, A practical field study of various solar cells on their performance in Malaysia, 34, 1939–1946, (2009). [Google Scholar]
  11. M. S. Khan, V. Hegde and G. Shankar, International Conference on Current Trends in Computer, Electrical, Electronics and Communication (CTCEEC), Effect of Temperature on Performance of Solar Panels-Analysis, 109–113, (2017). [Google Scholar]
  12. N. H. Zaini, M. Z. Ab Kadir, M. Izadi, N. I. Ahmad, M. A. M. Radzi and N. Azis, IEEE Conference on Energy Conversion (CENCON), The effect of temperature on a mono-crystalline solar PV panel, 249–253, (2015). [Google Scholar]
  13. K. Nishioka, T. Hatayama, Y. Uraoka, T. Fuyuki, R. Hagihara, M. Watanabe, Solar Energy Materials and Solar Cells, Field-test analysis of PV system output characteristics focusing on module temperature, 75, 665–671, (2003). [Google Scholar]
  14. R. Dubey et al., IEEE 42nd Photovoltaic Specialist Conference (PVSC), Measurement of temperature coefficient of photovoltaic modules in field and comparison with laboratory measurements, 1–5, (2015). [Google Scholar]
  15. G. Colt, International Conference on Applied and Theoretical Electricity (ICATE), Performance evaluation of a PV panel by rear surface water active cooling, 1–5, (2016). [Google Scholar]
  16. Sahay A., Sethi V.K., Tiwari A.C., Pandey M., Renew Sustain Energy Rev, A review of solar photovoltaic panel cooling systems with special reference to Ground Coupled Central Panel Cooling System (GC-CPCS)., 42, 306–312, (2014). [Google Scholar]
  17. Royne A., Dey C.J., Mills D.R., Sol Energy Mater Sol Cells, Cooling of photovoltaic cells under concentrated illumination: a critical review., 86, 451–483, (2003). [Google Scholar]
  18. N. Papanikolaou, G. Maliaris, M. Loupis, A. Kyritsis and V. Nikolaidis, MedPower, Combination of building applied PV panels with thermoelectric generation and geothermal cooling., 43, 1–5, (2014). [Google Scholar]
  19. Hasan, A.; McCormack, S.J.; Huang, M.J.; Norton, B., Energies, Energy and Cost Saving of a Photovoltaic-Phase Change Materials (PV-PCM) System through Temperature Regulation and Performance Enhancement of Photovoltaics., 7, 1318–1331, (2014) [Google Scholar]
  20. Rok Stropnik, Uros Stritih, Renewable Energy, Increasing the efficiency of PV panel with the use of PCM, 97, 671–679, (2016). [Google Scholar]
  21. Anna Machniewicz, Dominika Knera, Dariusz Heim, Energy Procedia, Effect of Transition Temperature on Efficiency of PV/PCM Panels, 78, 1684–1689, (2015). [Google Scholar]
  22. Munzer S.Y. Ebaid, Ayoup M. Ghrair, Mamdoh Al-Busoul, Energy Conversion and Management, Experimental investigation of cooling photovoltaic (PV) panels using (TiO2) nanofluid in water-polyethylene glycol mixture and (Al2O3) nanofluid in water-cetyltrimethylammonium bromide mixture, 155, 324–343, (2018). [Google Scholar]
  23. Zakie Rostami, Masoud Rahimi, Neda Azimi, Energy Conversion and Management, Using high-frequency ultrasound waves and nanofluid for increasing the efficiency and cooling performance of a PV module, 160, 141–149, (2018). [Google Scholar]
  24. H. Bahaidarah, Abdul Subhan, P. Gandhidasan, S. Rehman, Energy, Performance evaluation of a PV (photovoltaic) module by back surface water cooling for hot climatic conditions, 59, 445–453, (2013). [Google Scholar]
  25. Shuang-Ying Wu, Chen Chen, Lan Xiao, Renewable Energy, Heat transfer characteristics and performance evaluation of water-cooled PV/T system with cooling channel above PV panel, 125, 936–946, (2018). [Google Scholar]
  26. Li Zhu, Robert F. Boehm, Yiping Wang, Christopher Halford, Yong Sun, Solar Energy Materials and Solar Cells, Water immersion cooling of PV cells in a high concentration system, 95, 538545, (2011). [Google Scholar]
  27. Yiping Wang, Zhenlei Fang, Li Zhu, Qunwu Huang, Yan Zhang, Zhiying Zhang, Applied Energy, The performance of silicon solar cells operated in liquids, 86, 1037–1042, (2009). [Google Scholar]
  28. Faruk Yesildal, Ahmet Numan Ozakin, Kenan Yakut, Engineering Science and Technology, Optimisation of operational parameters for a photovoltaic panel cooled by spray cooling, (2021). [Google Scholar]
  29. Opeyeolu Timothy Laseinde, Moyahabo Dominic Ramere, Procedia Computer Science, Improvement in polycrystalline solar panel using thermal control water spraying cooling, 180, 239–248, (2021). [Google Scholar]
  30. Cätälin George Popovici, Sebastian Valeriu Hudisteanu, Theodor Dorin Mateescu, Nelu-Cristian Cherecheç, Energy Procedia, Efficiency Improvement of Photovoltaic Panels by Using Air Cooled Heat Sinks, 85, 425–432, (2016). [Google Scholar]
  31. A.M. Elbreki, A.F. Muftah, K. Sopian, H. Jarimi, A. Fazlizan, A. Ibrahim, Case Studies in Thermal Engineering, Experimental and economic analysis of passive cooling PV module using fins and planar reflector, 23, 100801, (2021). [Google Scholar]
  32. Abdallah Y.M. Ali, Essam M. Abo-Zahhad, Hesham I. Elqady, Mohammed Rabie, M.F. Elkady, A.H. El-Shazly, Energy Reports, Impact of microchannel heat sink configuration on the performance of high concentrator photovoltaic solar module, 6, 260–265, (2020). [Google Scholar]
  33. Yildirim, M.A.; Nowak-Oclofi, M., Energies, Modified Maximum Power Point Tracking Algorithm under Time-Varying Solar Irradiation., 13, 6722, (2020). [Google Scholar]
  34. Tawanda Hove, Renewable Energy, A method for predicting long-term average performance of photovoltaic systems, 21, 207–229, (2000). [Google Scholar]
  35. Kiflemariam R., Almas M., Lin C., Proceedings of the COMSOL conference in Boston, Modeling integrated thermoelectric generator photovoltaic thermal (TEG-PVT) system, (2014). [Google Scholar]
  36. Moshfegh H., Eslami M., Hosseini A., Springer, Thermoelectric Cooling of a Photovoltaic Panel. In: Nizetic, S., Papadopoulos, A. (eds) The Role of Exergy in Energy and the Environment. Green Energy and Technology. [Google Scholar]
  37. Ángel A. Bayod-Rújula, Amaya Martinez-Gracia, Alejandro Del Amo, Marta Canada, Sergio Usón, Javier Uche, Juan A. Tejero, RE&PQJ, Integration of Thermoelectric generators (TEG) in Solar PVT panels, 17, 495–499, (2019). [Google Scholar]
  38. Mehmet Esen, Solar Energy, Thermal performance of a solar-aided latent heat store used for space heating by heat pump, 69, 15–25, (2000). [Google Scholar]
  39. S.S. Chandel, Tanya Agarwal, Renewable and Sustainable Energy Reviews, Review of cooling techniques using phase change materials for enhancing efficiency of photovoltaic power systems, 73, 1342–1351, (2017). [Google Scholar]
  40. M.J. Huang, P.C. Eames, B. Norton, Solar Energy, Phase change materials for limiting temperature rise in building integrated photovoltaics, 80, 11211130, (2006). [Google Scholar]
  41. Tingyu Wang, Shuangfeng Wang, Ruilian Luo, Chunyu Zhu, Tomohiro Akiyama, Zhengguo Zhang, Applied Energy, Microencapsulation of phase change materials with binary cores and calcium carbonate shell for thermal energy storage, 171, 113–119, (2016). [Google Scholar]
  42. S.A. Nada, D.H. El-Nagar, Renewable Energy, Possibility of using PCMs in temperature control and performance enhancements of free stand and building integrated PV modules, 127, 630–641, (2018). [Google Scholar]
  43. Nooshin Karami, Masoud Rahimi, Energy Conversion and Management, Heat transfer enhancement in a PV cell using Boehmite nanofluid, 86, 275–285, (2014). [Google Scholar]
  44. Shuang-Ying Wu, Chen Chen, Lan Xiao, Renewable Energy, Heat transfer characteristics and performance evaluation of water-cooled PV/T system with cooling channel above PV panel, 125, 936–946, (2018). [Google Scholar]
  45. H. Bahaidarah, Abdul Subhan, P. Gandhidasan, S. Rehman, Energy, Performance evaluation of a PV (photovoltaic) module by back surface water cooling for hot climatic conditions, 59, 445–453, (2013). [Google Scholar]
  46. Mehrotra S., Rawat P., Debbarma M., Sudhakar K., Int J Sci Environmental Technology, Performance of a solar panel with water immersion cooling technique., 3, 1161–1172, (2014). [Google Scholar]
  47. S. Nizetic, D. Coko, A. Yadav, F. Grubisic-Cabo, Energy Conversion and Management, Water spray cooling technique applied on a photovoltaic panel: The performance response, 108, 287–296, (2016). [Google Scholar]
  48. Aly M.A. Soliman, Hamdy Hassan, Shinichi Ookawara, Energy Procedia, An experimental study of the performance of the solar cell with heat sink cooling system, 162, 127–135, (2019). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.