Open Access
Issue |
E3S Web Conf.
Volume 323, 2021
V International Scientific and Technical Conference Modern Power Systems and Units (MPSU 2021)
|
|
---|---|---|
Article Number | 00008 | |
Number of page(s) | 5 | |
DOI | https://doi.org/10.1051/e3sconf/202132300008 | |
Published online | 10 November 2021 |
- O.T. Farouki. Thermal properties of soils. Series Rock Soil Mech, 11:1–136 (1986). [Google Scholar]
- H. He, D. He, J. Jin, K. M. Smits, M. Dyck, Q. Wu, B.Ch. Si, J. Lv. Room for Improvement: A Review and Evaluation of 24 Soil Thermal Conductivity Parameterization Schemes Commonly Used in Land-Surface, Hydrological, and Soil-Vegetation-Atmosphere Transfer Models. Earth-Sci Rev, 211:103419 (2020). DOI: 10.1016/J.EARSCIREV.2020.103419 [CrossRef] [Google Scholar]
- M. Rerak. Selected Soil Thermal Conductivity Models. E3S Web of Conferences, 13:4–7 (2017). DOI: 10.1051/e3sconf/20171302003 [Google Scholar]
- N. Zhang, Z. Wang. Review of Soil Thermal Conductivity and Predictive Models. Int J Therm Sci 117:172–183 (2017). DOI: 10.1016/j.ijthermalsci.2017.03.013 [CrossRef] [Google Scholar]
- A. Rózanski, N. Kaczmarek. Empirical and Theoretical Models for Prediction of Soil Thermal Conductivity: A Review and Critical Assessment. Studia Geotechnica et Mechanica, 42 (4):330–340 (2020). DOI: 10.2478/sgem-2019-0053 [CrossRef] [Google Scholar]
- Y. Dong, J.S. McCartney, N. Lu. Critical review of thermal conductivity models for unsaturated soils. Geotech Geol Eng, 33 (2) (2015). DOI: 10.1007/s10706-015-9843-2 [Google Scholar]
- N. Zhang, Z. Wang. Review of soil thermal conductivity and predictive models. International. Journal of Thermal Sciences, 117: 172–183 (2017). DOI: 10.1016/j.ijthermalsci.2017.03.013 [CrossRef] [Google Scholar]
- F. Tong, L. Jing, R.W. Zimmerman. An effective thermal conductivity model of geological porous media for coupled thermo-hydro-mechanical systems with multiphase flow. International Journal of Rock Mechanics & Mining Sciences, 46: 1358–1369 (2009). DOI: 10.1016/jijrmms.2009.04.010 [CrossRef] [Google Scholar]
- V.R. Tarnawski, W.H. Leong. A series -parallel model for estimating the thermal conductivity of unsaturated soils. Int J Thermophys, 33: 11911218 (2012). DOI: 10.1007/s10765-012-1282-1 [Google Scholar]
- T. Tokoro, T. Ishikawa, S. Shirai, T. Nakamura. Estimation methods for thermal conductivity of sandy soil with electrical characteristics. Soil and Foundations, 56 (5): 927–936 (2016). DOI: 10.1016/j.sandf.2016.08.016 [CrossRef] [Google Scholar]
- X. Liu, G. Cai, S.S.C. Congress, L. Liu, S. Liu. Investigation of thermal conductivity and prediction model of mucky silty clay. J. Mater. Civ. Eng., 32 (8): 04020221 (2020). DOI: 10.1061/(ASCE)MT.1943-5533.0003294 [CrossRef] [Google Scholar]
- G.S. Jia, Z.D. Ma, Y. Cao, X.Z. Meng, L.Y. Zhang, J.C. Chai, L.W. Jin. A new packed-sphere model for geological materials thermal conductivity prediction at moderate porosity range for geothermal utilization. Int J Energy Res, 1–15 (2019). DOI: 10.1002/er.5067 [Google Scholar]
- J. Bi, M. Zhang, Y. Lai, W. Pei, J. Lu, Z. You, D. Li. A generalized model for calculating the thermal conductivity of freezing soils based on soil components and frost heave. International Journal of Heat and Mass Transfer, 150:119166 (2020). DOI: 10.1016/j.ijheatmasstransfer.2019.119166 [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.