Open Access
Issue |
E3S Web Conf.
Volume 323, 2021
V International Scientific and Technical Conference Modern Power Systems and Units (MPSU 2021)
|
|
---|---|---|
Article Number | 00007 | |
Number of page(s) | 8 | |
DOI | https://doi.org/10.1051/e3sconf/202132300007 | |
Published online | 10 November 2021 |
- T. Zhang, C. Wanga, S. Liub, N. Zhangc, T. Zhang. Assessment of soil thermal conduction using artificial neural network models. Cold Reg Sci and Technol, 169, (2020). DOI: 10.1016/j.coldregions.2019.102907 [CrossRef] [Google Scholar]
- S. K. Haigh. Thermal Conductivity of Sands. Geotechnique, 62 (7): 617–625 (2012). DOI: 10.1680/geot.11.P.043. [CrossRef] [Google Scholar]
- Y. Zhao, B. Si, Z. Zhang, M. Li, H. He, R. L. Hill. A new thermal conductivity model for sandy and peat soils. Agricultural and Forest Meteorology, 274: 95–105 (2019). [CrossRef] [Google Scholar]
- D. Barry-Macaulay, A. Bouazza, B. Wang, R.M. Singh. Evaluation of soil thermal conductivity models. Canadian Geotech J, 52 (11): 1892–1900 (2015). DOI: 10.1139/cgj-2014-0518 [CrossRef] [Google Scholar]
- I. Ofrikhter, A. Zaharov, A. Ponomaryov, N. Likhacheva. Modeling heat transfer process in soils. MATEC Web of Conferences, 251 (4): 02048 (2018). DOI: 10.1051/matecconf/201825102048 [CrossRef] [EDP Sciences] [Google Scholar]
- O.T. Farouki. Thermal properties of soils. Series Rock Soil Mech, 11:1–136 (1986). [Google Scholar]
- H. He, D. He, J. Jin, K. M. Smits, M. Dyck, Q. Wu, B.Ch. Si, J. Lv. Room for Improvement: A Review and Evaluation of 24 Soil Thermal Conductivity Parameterization Schemes Commonly Used in Land-Surface, Hydrological, and Soil-Vegetation-Atmosphere Transfer Models. Earth-Sci Rev, 211:103419 (2020). DOI: 10.1016/J.EARSCIREV.2020.103419 [CrossRef] [Google Scholar]
- M. Rerak. Selected Soil Thermal Conductivity Models. E3S Web of Conferences, 13:4–7 (2017). DOI: 10.1051/e3sconf/20171302003 [Google Scholar]
- N. Zhang, Z. Wang. Review of Soil Thermal Conductivity and Predictive Models. Int J Therm Sci 117:172–183 (2017). DOI: 10.1016/j.ijthermalsci.2017.03.013 [CrossRef] [Google Scholar]
- A. Rózafiski, Natalia Kaczmarek. Empirical and Theoretical Models for Prediction of Soil Thermal Conductivity: A Review and Critical Assessment. Studia Geotechnica et Mechanica, 42 (4):330–340 (2020). DOI: 10.2478/sgem-2019-0053 [CrossRef] [Google Scholar]
- M.S. Kersten. Thermal properties of soil. Bull Univ Minn Inst Technol, 52:1–225 (1949) [Google Scholar]
- D.A. De Vries. The thermal properties of soils. In: W.R. van Wijk, Ed., Physics of Plant Environment. North Holland Publishing Co., Amsterdam, 210–235 (1963) [Google Scholar]
- D.A. De Vries, N.H. Afgan. Heat and mass transfer in the biosphere. John Wiley and Sons, 1975. [Google Scholar]
- O. Johansen. Thermal conductivity of soils. Ph.D. thesis. University of Trondheim, Trondheim, Norway. US Army Corps of Engineers, Cold Regions Research and Engineering Laboratory, Hanover, N. H. CRREL Draft English Translation. 637, 1975. [Google Scholar]
- P. Oclofi, P. Cisek, M. Pilarczyk, D. Taler. Numerical Simulation of Heat Dissipation Processes in Underground Power Cable System Situated in Thermal Backfill and Buried in a Multilayered Soil. Energ Convers Manage, 95: 352–370 (2015). DOI: 10.1016/j.enconman.2015.01.092 [CrossRef] [Google Scholar]
- C.D. Peters-Lidard, E. Blackburn, X. Liang, E.F. Wood. The effect of soil thermal conductivity parameterization on surface energy fluxes and temperatures. Journal of the Atmospheric Sciences, 55:1209–1224 (1998). DOI: 10.1175/1520-0469(1998)055<1209:TEOSTC>2.0.CO;2 [CrossRef] [Google Scholar]
- N. Zhang, X. Yu, A. Pradhan, A.J. Puppala. A new generalized soil thermal conductivity model for sand-kaolin clay mixtures using thermo-time domain reflectometry probe test. Acta Geotech, 12:739–752 (2017). DOI: 10.1007/s11440-016-0506-0 [CrossRef] [Google Scholar]
- S.X. Chen. Thermal Conductivity of Sands. Heat Mass Trans, 44 (10):1241–1246 (2008). DOI: 10.1007/s00231-007-0357-1 [CrossRef] [Google Scholar]
- S.K. Haigh. Thermal Conductivity of Sands. Geotechnique, 62 (7):617–625 (2012). DOI: 10.1680/geot.11.P.043 [CrossRef] [Google Scholar]
- J. Côté, J.M. Konrad. 2005. Thermal Conductivity of Base-Course Materials. Canadian Geotechnical Journal, 42 (1):61–78 (2005). DOI: 10.1139/t04-081 [CrossRef] [Google Scholar]
- J. Côté, J.M. Konrad. A Generalized Thermal Conductivity Model for Soils and Construction Materials. Canadian Geotechnical Journal, 42 (2): 443–458 (2005). DOI: 10.1139/t04-106 [CrossRef] [Google Scholar]
- Y. Lu, S. Lu, R. Horton, T. Ren. An empirical model for estimating soil thermal conductivity from texture, water content, and bulk density. Soil. Sci. Soc. Amer. J., 78: 1859–1868 (2014). DOI: 10.2136/sssaj2014.05.0218 [CrossRef] [Google Scholar]
- H. He, Y. Zhao, M.F. Dyck, B. Si, H. Jin, J. Lv, J.A. Wang. A modified normalized model for predicting effective soil thermal conductivity, Acta Geotechnica, 12 (6): 1281–1300 (2017). DOI: 10.1007/s11440-017-0563-z [CrossRef] [Google Scholar]
- N. Lu, Y. Dong. Closed-Form Equation for Thermal Conductivity of Unsaturated Soils at Room Temperature. J Geotech Geoenviron, 141 (6):04015016. DOI: 10.1061/(asce)gt.1943-5606.0001295 [Google Scholar]
- N. Zhang, X. Yu, A. Pradhan, A.J. Puppal. Thermal conductivity of quartz sands by thermo-time domain reflectometry probe and model prediction. Journal of Materials in Civil Engineering, 27 (12): 04015059 (2015). DOI: 10.1061/(asce)mt.1943-5533.0001332 [CrossRef] [Google Scholar]
- N. Zhang, X. Yu, A. Pradhan, A.J. Poppala. A new generalized soil thermal conductivity model for sand-kaolin clay mixtures using thermo-time domain reflectometry probe test. Acta Geotechnica, 12 (4): 739–752 (2016). DOI: 10.1007/s11440-016-0506-0 [Google Scholar]
- V. Tarnawski, W.H. Leong. Advanced Geometric Mean Model for Predicting Thermal Conductivity of Unsaturated Soils. Int J Thermophys, 37 (2): 142 (2016). DOI: 10.1007/s10765-015-2024-y [CrossRef] [Google Scholar]
- B. Tong, Z. Gao, R. Horton, Y. Li, L. Wang. An empirical model for estimating soil thermal conductivity from soil water content and porosity. Journal of Hydrometeorology, 17 (2): 601–613 (2016). DOI: 10.1175/JHM-D-15-0119.1 [CrossRef] [Google Scholar]
- Z. Wang, N. Zhang, J. Ding, Q. Li, J. Xu. Thermal conductivity of sands treated with microbially induced calcite precipitation (MICP) and model prediction. International Journal of Heat and Mass Transfer, (2019). DOI: 10.1016/jijheatmasstransfer.2019.118899 [Google Scholar]
- R. Li, L. Zhao, T. Wu, Q. Wang, Y. Ding, J. Yao, X. Wu, G. Hu, Y. Xiao, Y. Du, X. Zhu, Y. Qin, S. Yang, R. Bai, E. Du, G. Liu, D. Zou, Y. Qiao, J. Shi. Soil thermal conductivity and its influencing factors at the Tanggula permafrost region on the Qinghai-Tibet Plateau. Agricultural and Forest Meteorology, 264: 235–246 (2019). DOI: 10.1016/j.agrformet.2018.10.011 [CrossRef] [Google Scholar]
- Z. Tian, T. Ren, J.L. Heitman, R. Horton. Estimating thermal conductivity of frozen soils from air-filled porosity. Soil Science Society of America Journal, (2020). DOI: 10.1002/saj2.20102 [Google Scholar]
- B. Tian, Y. Kong, Y. Gong, C. Ye, Z. Pang, J. Wang, P. Qin. Thermal conductivity characterisation of shallow ground via correlations with geophysical parameters. Engineering Geology, 272 (2020). DOI: 10.1016/j.enggeo.2020.105633 [CrossRef] [Google Scholar]
- Y. Xiao, G. Ma, B. Nan, J.S. McCartney. Thermal conductivity of granular soil mixtures with contrasting particle shapes. J Geotech Geoenviron, 146 (5):06020004 (2020). DOI: 10.1061/(ASCE)GT.1943-5606.0002243 [CrossRef] [Google Scholar]
- X. Song, H. Fan, J. Liu, X. Yang. An improved thermal conductivity model for unsaturated clay. KSCE Journal of Civil Engineering, 24: 2364–2371 (2020). DOI: 10.1007/s12205-020-1812-5 [CrossRef] [Google Scholar]
- Q. Sun, C. Lyu, W. Zhang. The relationship between thermal conductivity and electrical resistivity of silty clay soil in the temperature range - 20 C to 10 C. Heat and Mass Transfer, 56 (6): 2007–2013, (2020). DOI: 10.1007/s00231-020-02813-0 [CrossRef] [Google Scholar]
- H. He, M. Dyck, J. Lv. A new model for predicting soil thermal conductivity from matric potential. J Hydrol, 589:125167 (2020). DOI: 10.1016/j.jhydrol.2020.125167 [CrossRef] [Google Scholar]
- H. He, M. Li, M. Dyck, B. Si, J. Wang, J. Lv. Modelling of soil solid thermal conductivity. International Communications in Heat and Mass Transfer, 116: 104602 (2020). DOI: 10.1016/jicheatmasstransfer.2020.104602 [CrossRef] [Google Scholar]
- J. Zhu. Unsaturated cell model of effective thermal conductivity of soils. SN Appl. Sci., 2: 1395 (2020). DOI: 10.1007/s42452-020-03211-1 [CrossRef] [Google Scholar]
- H. Wen, J. Bi, D. Guo. Calculation of the thermal conductivities of fine-textured soils based on multiple linear regression and artificial neural networks. Eur J Soil Sci, 71:568–579 (2020). DOI: 10.1111/ejss.12934 [CrossRef] [Google Scholar]
- Z.H. Rizvi, H.H. Zaidi, S.J. Akhtar, A.S. Sattari, F. Wuttke. Soft and hard computation methods for estimation of the effective thermal conductivity of sands. Heat and Mass Transfer, 56: 1947–1959 (2020). DOI: 10.1007/s00231-020-02833-w [CrossRef] [Google Scholar]
- N. Zhang, H. Zou, L. Zhang, A.J. Puppala, S. Liu, G. Cai. A unified soil thermal conductivity model based on artificial neural network. International Journal of Thermal Sciences, 155:106414 (2020). DOI: 10.1016/j.ijthermalsci.2020.106414 [CrossRef] [Google Scholar]
- D. Shrestha, F. Wuttke. Predicting the effective thermal conductivity of geo-materials using artificial neural network. W35 Web of Conferences, 205: 04001 (2020). DOI: 10.1051/e3sconf/202020504001 [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.