Open Access
Issue
E3S Web Conf.
Volume 323, 2021
V International Scientific and Technical Conference Modern Power Systems and Units (MPSU 2021)
Article Number 00011
Number of page(s) 8
DOI https://doi.org/10.1051/e3sconf/202132300011
Published online 10 November 2021
  1. Zhar, R., et al., Parametric analysis and multi-objective optimization of a combined Organic Rankine Cycle and Vapor Compression Cycle. Sustainable Energy Technologies and Assessments, 2021. 47: p. 101401. https://doi.org/10.1016/j.seta.2021.101401. [CrossRef] [Google Scholar]
  2. Ghodbane, M., et al., A numerical simulation of a linear Fresnel solar reflector directed to produce steam for the power plant. Journal of Cleaner Production, 2019. 231: p. 494–508. https://doi.org/10.1016/j.jclepro.2019.05.201. [CrossRef] [Google Scholar]
  3. Attia, M.E.H., et al. Experimental Study of the Temperature Distribution Inside an Indirect Solar Dryer Chamber. in Advances in Air Conditioning and Refrigeration. 2021. Singapore: Springer Singapore. [Google Scholar]
  4. Kalogirou, S.A., Performance of solar collectors, in Solar energy engineering: processes and systems. 2009, Academic Press of Elsevier. p. 219–250. [CrossRef] [Google Scholar]
  5. Kalogirou, S.A., Solar thermal collectors and applications. Progress in Energy and Combustion Science, 2004. 30(3): p. 231–295. https://doi.org/10.1016/j.pecs.2004.02.001. [CrossRef] [Google Scholar]
  6. Ghodbane, M., B. Boumeddane, and A.K. Hussein, Performance Analysis of a Solar-Driven Ejector Air Conditioning System Under El-Oued Climatic Conditions, Algeria. Journal of Thermal Engineering, 2021. 7(1): p. 172–189. https://dx.doi.org/10.18186/thermal.847334. [Google Scholar]
  7. Ghodbane, M., et al., Thermal numerical investigation of a small parabolic trough collector under desert climatic conditions Journal of Thermal Engineering, 2021. 7(3): p. 429–446. https://doi.org/10.18186/thermal.884657. [Google Scholar]
  8. Ghodbane, M., et al., Optical numerical investigation of a solar power plant of parabolic trough collectors. Journal of Thermal Engineering, 2021. 7(3): p. 550–569. https://doi.org/10.18186/thermal.888167. [CrossRef] [Google Scholar]
  9. Ghodbane, M. and B. Boumeddane, A parabolic trough solar collector as a solar system for heating water: a study based on numerical simulation International Journal of Energetica (IJECA) 2017. 2(2): p. 29–37. https://www.ijeca.info/index.php/IJECA/article/view/32. [Google Scholar]
  10. Bellos, E., Z. Said, and C. Tzivanidis, The use of nanofluids in solar concentrating technologies: A comprehensive review. Journal of Cleaner Production, 2018. 196: p. 84–99. https://doi.org/10.1016/j.jclepro.2018.06.048. [CrossRef] [Google Scholar]
  11. Bellos, E. and C. Tzivanidis, A review of concentrating solar thermal collectors with and without nanofluids. Journal of Thermal Analysis and Calorimetry, 2019. 135(1): p. 763–786. https://doi.org/10.1007/s10973-018-7183-1. [CrossRef] [Google Scholar]
  12. Seyednezhad, M., et al., Nanoparticles for water desalination in solar heat exchanger. Journal of Thermal Analysis and Calorimetry, 2019: p. https://doi.org/10.1007/s10973-019-08634-6. [Google Scholar]
  13. Ghodbane, M., et al., Performance assessment of linear Fresnel solar reflector using MWCNTs/DW nanofluids. Renewable Energy, 2020. 151: p. 43–56. https://doi.org/10.1016/j.renene.2019.10.137. [CrossRef] [Google Scholar]
  14. Hussein, A.K., et al., The Effect of the Baffle Length on the Natural Convection in an Enclosure Filled with Different Nanofluids. Journal of Thermal Analysis and Calorimetry, 2020: p. https://dx.doi.org/10.1007/s10973-020-10300-1. [Google Scholar]
  15. Said, Z., et al., Recent advances on nanofluids for low to medium temperature solar collectors: energy, exergy, economic analysis and environmental impact. Progress in Energy and Combustion Science, 2021. 84: p. 100898. https://doi.org/10.1016/j.pecs.2020.100898. [CrossRef] [Google Scholar]
  16. Mahian, O., et al., Recent advances in using nanofluids in renewable energy systems and the environmental implications of their uptake. Nano Energy, 2021. 86: p. 106069. https://doi.org/10.1016/j.nanoen.2021.106069. [CrossRef] [Google Scholar]
  17. Ghodbane, M., et al., Brief on Solar Concentrators: Differences and Applications. Instrumentation Mesure Metrologie, 2020. 19(5): p. 371–378. https://dx.doi.org/10.18280/i2m.190507. [CrossRef] [Google Scholar]
  18. Said, Z., et al., Optical performance assessment of a small experimental prototype of linear Fresnel reflector. Case Studies in Thermal Engineering, 2019: p. https://doi.org/10.1016/j.csite.2019.100541. [Google Scholar]
  19. Bellos, E., Progress in the design and the applications of Linear Fresnel Reflectors - A critical review. Thermal Science and Engineering Progress, 2019. 10(May 2019): p. 112–137. https://doi.org/10.1016/j.tsep.2019.01.014. [CrossRef] [Google Scholar]
  20. Ghodbane, M., et al., Energy, Financial and Environmental investigation of a direct steam production power plant driven by linear Fresnel solar reflectors. Journal of Solar Energy Engineering, Apr 2021. 143(2): p. 021008. https://doi.org/10.1115/1.4048158. [CrossRef] [Google Scholar]
  21. Bellos, E., C. Tzivanidis, and A. Papadopoulos, Enhancing the performance of a linear Fresnel reflector using nanofluids and internal finned absorber. Journal of Thermal Analysis and Calorimetry, 2019. 135(1): p. 237–255. https://doi.org/10.1007/s10973-018-6989-1. [CrossRef] [Google Scholar]
  22. Bellos, E., et al., Energy and financial investigation of a cogeneration system based on linear Fresnel reflectors. Energy Conversion and Management, 2019. 198: p. 111821. https://doi.org/10.1016/j.enconman.2019.111821. [CrossRef] [Google Scholar]
  23. Bellos, E., C. Tzivanidis, and A. Papadopoulos, Optical and thermal analysis of a linear Fresnel reflector operating with thermal oil, molten salt and liquid sodium. Applied Thermal Engineering, 2018. 133: p. 70–80. https://doi.org/10.1016/j.applthermaleng.2018.01.038. [CrossRef] [Google Scholar]
  24. Bellos, E., C. Tzivanidis, and A. Papadopoulos, Daily, monthly and yearly performance of a linear Fresnel reflector. Solar Energy, 2018. 173(517–529. https://doi.org/10.1016/j.solener.2018.08.008. [CrossRef] [Google Scholar]
  25. Barbón, A., et al., Theoretical elements for the design of a small scale Linear Fresnel Reflector: Frontal and lateral views. Solar Energy, 2016. 132 (July 2016): p. 188–202. http://dx.doi.org/10.1016/j.solener.2016.02.054. [CrossRef] [Google Scholar]
  26. Barbón, A., et al., Optimization of the distribution of small scale linear Fresnel reflectors on roofs of urban buildings. Applied Mathematical Modelling, 2018. 59(July 2018): p. 233–250. https://doi.org/10.1016/j.apm.2018.01.040. [CrossRef] [Google Scholar]
  27. Barbón, A., et al., Parametric study of the small scale linear Fresnel reflector. Renewable Energy, 2018. 116(February 2018): p. 64–74. https://doi.org/10.1016/j.renene.2017.09.066. [CrossRef] [Google Scholar]
  28. Ghodbane, M., B. Boumeddane, and N. Said, Design and experimental study of a solar system for heating water utilizing a linear Fresnel reflector. Journal of Fundamental and Applied Sciences, 2016. 8(3): p. 804–825, http://dx.doi.org/10.4314/jfas.v8i3.8. [Google Scholar]
  29. Ghodbane, M., B. Boumeddane, and N. Said, A linear Fresnel reflector as a solar system for heating water: theoretical and experimental study. Case Studies in Thermal Engineering, 2016. 8(C): p. 176186, http://dx.doi.org/10.1016/j.csite.2016.06.006. [Google Scholar]
  30. Ghodbane, M., et al., Evaluating energy efficiency and economic effect of heat transfer in copper tube for small solar linear Fresnel reflector. Journal of Thermal Analysis and Calorimetry, 2021. 143(6): p. 4197–4215. https://doi.org/10.1007/s10973-020-09384-6. [CrossRef] [Google Scholar]
  31. Said, Z., et al., Heat transfer, entropy generation, economic and environmental analyses of linear Fresnel reflector using novel rGO-Co3O4 hybrid nanofluids. Renewable Energy, 2021. 165(Part 1): p. 420–437. https://doi.org/10.1016/j.renene.2020.11.054. [CrossRef] [Google Scholar]
  32. Said, Z., et al., 4E (Energy, Exergy, Economic, and Environment) examination of a small LFR solar water heater: An experimental and numerical study. Case Studies in Thermal Engineering, 2021. 27: p. 101–277. https://doi.org/10.1016/j.csite.2021.101277. [CrossRef] [Google Scholar]
  33. Ghodbane, M. and B. Boumeddane, Optical modeling and thermal behavior of a parabolic trough solar collector in the Algerian sahara AMSE JOURNALS-AMSE IIETA, MMC_B, 2017. 86(2): p. 406–426. https://doi.org/10.18280/mmc_b.860207 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.